Home
Class 12
MATHS
int0^(pi//2)(tan^2x)/(1+tan^2x)dx is equ...

`int_0^(pi//2)(tan^2x)/(1+tan^2x)dx` is equal to

A

`oo`

B

0

C

`pi/4`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_0^{\frac{\pi}{2}} \frac{\tan^2 x}{1 + \tan^2 x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We know that: \[ 1 + \tan^2 x = \sec^2 x \] Thus, we can rewrite the integrand: \[ \frac{\tan^2 x}{1 + \tan^2 x} = \frac{\tan^2 x}{\sec^2 x} = \tan^2 x \cdot \cos^2 x \] ### Step 2: Rewrite \(\tan^2 x\) Using the identity \(\tan x = \frac{\sin x}{\cos x}\), we have: \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \] Substituting this into the integral gives: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\cos^2 x} \cdot \cos^2 x \, dx = \int_0^{\frac{\pi}{2}} \sin^2 x \, dx \] ### Step 3: Use the identity for \(\sin^2 x\) We can use the identity: \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] Thus, we rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} \, dx \] ### Step 4: Split the integral This integral can be split into two parts: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 - \cos 2x) \, dx = \frac{1}{2} \left( \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \cos 2x \, dx \right) \] ### Step 5: Evaluate the integrals 1. The first integral: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \] 2. The second integral: \[ \int_0^{\frac{\pi}{2}} \cos 2x \, dx = \left[ \frac{\sin 2x}{2} \right]_0^{\frac{\pi}{2}} = \frac{\sin(\pi)}{2} - \frac{\sin(0)}{2} = 0 \] ### Step 6: Combine the results Putting it all together: \[ I = \frac{1}{2} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4} \] Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int(1+tan^2x)/(1-tan^2x)dx=

The value of I=int_(0)^(pi//4)(tan^(*n+1)x)dx+(1)/(2)int_(0)^(pi//2)tan^(n-1)((x)/(2))dx is equal to

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

int_(0)^( pi/2)(dx)/(1+tan^(5)x)

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^((pi)/(2))(tan xdx)/(1+tan x) equals

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. int0^(pi//2)(tan^2x)/(1+tan^2x)dx is equal to

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |