Home
Class 12
MATHS
int0^1sin(2tan^(-1)sqrt((1+x)/(1-x)))dx ...

`int_0^1sin(2tan^(-1)sqrt((1+x)/(1-x)))dx` is equal to

A

`pi//6`

B

`pi//4`

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \sin\left(2\tan^{-1}\left(\sqrt{\frac{1+x}{1-x}}\right)\right)dx \), we will follow these steps: ### Step 1: Substitution Let \( x = \cos \theta \). Then, \( dx = -\sin \theta \, d\theta \). The limits change as follows: - When \( x = 0 \), \( \theta = \frac{\pi}{2} \). - When \( x = 1 \), \( \theta = 0 \). Thus, the integral becomes: \[ I = \int_{\frac{\pi}{2}}^0 \sin\left(2\tan^{-1}\left(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\right)\right)(-\sin \theta \, d\theta) \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \sin\left(2\tan^{-1}\left(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\right)\right)\sin \theta \, d\theta \] ### Step 2: Simplifying the Argument of Sine Next, we simplify \( \tan^{-1}\left(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\right) \): \[ \sqrt{\frac{1+\cos \theta}{1-\cos \theta}} = \sqrt{\frac{2\cos^2(\theta/2)}{2\sin^2(\theta/2)}} = \cot\left(\frac{\theta}{2}\right) \] Thus, \( \tan^{-1}\left(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\right) = \frac{\pi}{2} - \frac{\theta}{2} \). ### Step 3: Substitute Back Now substituting back into the integral: \[ I = \int_0^{\frac{\pi}{2}} \sin\left(2\left(\frac{\pi}{2} - \frac{\theta}{2}\right)\right) \sin \theta \, d\theta \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \sin\left(\pi - \theta\right) \sin \theta \, d\theta = \int_0^{\frac{\pi}{2}} \sin \theta \sin \theta \, d\theta = \int_0^{\frac{\pi}{2}} \sin^2 \theta \, d\theta \] ### Step 4: Evaluate the Integral Using the identity \( \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \): \[ I = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \left[ \theta - \frac{\sin(2\theta)}{2} \right]_0^{\frac{\pi}{2}} \] Calculating the limits: \[ = \frac{1}{2} \left[ \frac{\pi}{2} - 0 \right] = \frac{\pi}{4} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)sin(2tan^(-)sqrt((1+x)/(1-x)))dx

int_(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

[" 0.",int sin^(-1)sqrt((x)/(a+x))dx" is equal to "],[," 1) "(x+a)tan^(-1)sqrt((x)/(a))-sqrt(ax)+C],[" 3) "(x+a)cot^(-1)sqrt((x)/(a))-sqrt(ax)+C," 2) "(x+a)tan^(-1)sqrt((x)/(a))+sqrt(ax)+C]

int_0^1 sin^-1x/sqrt(1+x)dx

int_0^1sin^(-1)(x)/sqrt(1-x^2) dx

int tan^(-1)((sqrt(1+x^(2))-1)/(x))dx

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

int tan(sin^(-1)x)dx is equal to

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. int0^1sin(2tan^(-1)sqrt((1+x)/(1-x)))dx is equal to

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |