Home
Class 12
MATHS
int0^(pi//2)(dx)/(sin(x-pi/3)sin(x-pi/6)...

`int_0^(pi//2)(dx)/(sin(x-pi/3)sin(x-pi/6))` is equal to

A

`4logsqrt3`

B

`-4logsqrt3`

C

`2logsqrt3`

D

`-2logsqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{\sin(x - \frac{\pi}{3}) \sin(x - \frac{\pi}{6})} \] we will use some trigonometric identities and properties of definite integrals. ### Step 1: Rewrite the integral using trigonometric identities We can use the identity for the sine of a difference: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] Thus, we rewrite the sine functions in the denominator: \[ \sin(x - \frac{\pi}{3}) = \sin x \cos \frac{\pi}{3} - \cos x \sin \frac{\pi}{3} = \frac{1}{2} \sin x - \frac{\sqrt{3}}{2} \cos x \] \[ \sin(x - \frac{\pi}{6}) = \sin x \cos \frac{\pi}{6} - \cos x \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x \] ### Step 2: Substitute into the integral Now substituting these into the integral gives: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{\left(\frac{1}{2} \sin x - \frac{\sqrt{3}}{2} \cos x\right)\left(\frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x\right)} \] ### Step 3: Simplify the expression Next, we can factor out constants from the integral: \[ I = 4 \int_0^{\frac{\pi}{2}} \frac{dx}{(\sin x - \sqrt{3} \cos x)(\sqrt{3} \sin x - \cos x)} \] ### Step 4: Use symmetry properties of the integral Now, we can exploit the symmetry of the sine and cosine functions. We can use the property: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \int_0^{\frac{\pi}{2}} f\left(\frac{\pi}{2} - x\right) \, dx \] This means we can evaluate: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{\sin\left(\frac{\pi}{2} - x - \frac{\pi}{3}\right) \sin\left(\frac{\pi}{2} - x - \frac{\pi}{6}\right)} \] This leads to: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{\cos(x - \frac{\pi}{3}) \cos(x - \frac{\pi}{6})} \] ### Step 5: Combine the two integrals Now we can add the two expressions for \(I\): \[ 2I = \int_0^{\frac{\pi}{2}} \left(\frac{1}{\sin(x - \frac{\pi}{3}) \sin(x - \frac{\pi}{6})} + \frac{1}{\cos(x - \frac{\pi}{3}) \cos(x - \frac{\pi}{6})}\right) dx \] ### Step 6: Solve the resulting integral This integral can be simplified using the identity: \[ \frac{1}{\sin A \sin B} + \frac{1}{\cos A \cos B} = \frac{\sin^2 A + \cos^2 A}{\sin A \cos A} = \frac{1}{\sin A \cos A} \] Thus, we can integrate this expression over the limits to find \(I\). ### Final Step: Evaluate the integral After evaluating the integral, we find: \[ I = \frac{\pi}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2) sin^3 x dx

int_(0)^(pi//2) abs(sin(x-pi/4)) dx=

int_0^(pi/2) sin^6x dx

int_(0)^( pi/2)(sin x)*dx

int_0^(pi/2) sin x dx

int(sin(2x))/(sin(x+(pi)/(6))sin(x-(pi)/(6)))dx

int_0^(2pi) sin^5 (x/4) dx is equal to

int_(0)^((pi)/(2))(sin^(3)x)/(sin x+cos x)dx is equal to

int_(0)^(pi)sin^(2)x dx is equal to

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. int0^(pi//2)(dx)/(sin(x-pi/3)sin(x-pi/6)) is equal to

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |