Home
Class 12
MATHS
The correct evaluation of int0^(pi//2)|s...

The correct evaluation of `int_0^(pi//2)|sin(x-pi/4)|dx` is

A

`2+sqrt2`

B

`2-sqrt2`

C

`-2+sqrt2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^{\frac{\pi}{2}} |\sin(x - \frac{\pi}{4})| \, dx \), we need to analyze the expression inside the absolute value. ### Step 1: Determine where \( \sin(x - \frac{\pi}{4}) \) changes sign The sine function changes sign at \( x - \frac{\pi}{4} = 0 \), which gives us \( x = \frac{\pi}{4} \). Therefore, we will split the integral at this point. ### Step 2: Split the integral We can express the integral as: \[ I = \int_0^{\frac{\pi}{4}} -\sin(x - \frac{\pi}{4}) \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(x - \frac{\pi}{4}) \, dx \] ### Step 3: Evaluate the first integral For \( x \) in the interval \( [0, \frac{\pi}{4}] \), \( \sin(x - \frac{\pi}{4}) \) is negative. Thus, we have: \[ \int_0^{\frac{\pi}{4}} -\sin(x - \frac{\pi}{4}) \, dx = -\int_0^{\frac{\pi}{4}} \sin(x - \frac{\pi}{4}) \, dx \] Using the substitution \( u = x - \frac{\pi}{4} \), we have \( du = dx \) and the limits change from \( 0 \) to \( -\frac{\pi}{4} \) and from \( \frac{\pi}{4} \) to \( 0 \): \[ = -\left[-\cos(u)\right]_{0}^{-\frac{\pi}{4}} = -\left[-\cos(-\frac{\pi}{4}) + \cos(0)\right] = -\left[-\frac{1}{\sqrt{2}} + 1\right] = 1 - \frac{1}{\sqrt{2}} \] ### Step 4: Evaluate the second integral For \( x \) in the interval \( [\frac{\pi}{4}, \frac{\pi}{2}] \), \( \sin(x - \frac{\pi}{4}) \) is positive: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(x - \frac{\pi}{4}) \, dx \] Using the same substitution \( u = x - \frac{\pi}{4} \): \[ = \int_{0}^{\frac{\pi}{4}} \sin(u) \, du = -\cos(u) \bigg|_{0}^{\frac{\pi}{4}} = -\left[-\frac{1}{\sqrt{2}} + 1\right] = 1 - \frac{1}{\sqrt{2}} \] ### Step 5: Combine the results Now, we combine both integrals: \[ I = \left(1 - \frac{1}{\sqrt{2}}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) = 2 - \frac{2}{\sqrt{2}} = 2 - \sqrt{2} \] ### Final Result Thus, the value of the integral is: \[ \int_0^{\frac{\pi}{2}} |\sin(x - \frac{\pi}{4})| \, dx = 2 - \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

int_(0)^(pi//2) abs(sin(x-pi/4)) dx=

Evaluate int_0^(pi/2) sin^7x dx

int_0^(2pi) sin^5 (x/4) dx is equal to

int_0^(pi/2) sin x sin 2x dx

int_(0)^( pi/2)(sin x)*dx

Evaluate : int_(-pi//2)^(pi//2) |sin x|dx

int_(0)^( pi/4)sin|x|dx

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

int_(0)^( pi)sin(2*x)dx

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. The correct evaluation of int0^(pi//2)|sin(x-pi/4)|dx is

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |