Home
Class 12
MATHS
The value of int1^3|(x-1)(x-2)(x-3)|dx i...

The value of `int_1^3|(x-1)(x-2)(x-3)|dx` is

A

`1/3`

B

`1/2`

C

`9/4`

D

`9/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_1^3 |(x-1)(x-2)(x-3)| \, dx \), we will first analyze the expression inside the absolute value to determine where it is positive and where it is negative. ### Step 1: Identify the critical points The expression \( (x-1)(x-2)(x-3) \) has roots at \( x = 1, 2, 3 \). These points will help us determine the intervals where the expression is positive or negative. ### Step 2: Test the intervals We will evaluate the sign of \( (x-1)(x-2)(x-3) \) in the intervals \( (-\infty, 1) \), \( (1, 2) \), \( (2, 3) \), and \( (3, \infty) \). 1. **Interval \( (-\infty, 1) \)**: Choose \( x = 0 \): \[ (0-1)(0-2)(0-3) = (-1)(-2)(-3) = -6 \quad (\text{negative}) \] 2. **Interval \( (1, 2) \)**: Choose \( x = 1.5 \): \[ (1.5-1)(1.5-2)(1.5-3) = (0.5)(-0.5)(-1.5) = 0.375 \quad (\text{positive}) \] 3. **Interval \( (2, 3) \)**: Choose \( x = 2.5 \): \[ (2.5-1)(2.5-2)(2.5-3) = (1.5)(0.5)(-0.5) = -0.375 \quad (\text{negative}) \] 4. **Interval \( (3, \infty) \)**: Choose \( x = 4 \): \[ (4-1)(4-2)(4-3) = (3)(2)(1) = 6 \quad (\text{positive}) \] ### Step 3: Rewrite the integral Based on the sign analysis, we can rewrite the integral as: \[ \int_1^3 |(x-1)(x-2)(x-3)| \, dx = \int_1^2 (x-1)(x-2)(x-3) \, dx - \int_2^3 (x-1)(x-2)(x-3) \, dx \] ### Step 4: Calculate the integrals 1. **For \( \int_1^2 (x-1)(x-2)(x-3) \, dx \)**: \[ (x-1)(x-2)(x-3) = -(x-1)(x-2)(3-x) \] We can expand it: \[ = -(x^3 - 6x^2 + 11x - 6) \] So, \[ = -x^3 + 6x^2 - 11x + 6 \] Now integrate: \[ \int (-x^3 + 6x^2 - 11x + 6) \, dx = -\frac{x^4}{4} + 2x^3 - \frac{11x^2}{2} + 6x \Big|_1^2 \] Evaluating at \( x = 2 \): \[ -\frac{16}{4} + 2(8) - \frac{11(4)}{2} + 12 = -4 + 16 - 22 + 12 = 2 \] Evaluating at \( x = 1 \): \[ -\frac{1}{4} + 2(1) - \frac{11(1)}{2} + 6 = -\frac{1}{4} + 2 - \frac{11}{2} + 6 = -\frac{1}{4} + 8 - 5.5 = 2.25 \] Thus, \[ \int_1^2 (x-1)(x-2)(x-3) \, dx = 2 - 2.25 = -0.25 \] 2. **For \( \int_2^3 (x-1)(x-2)(x-3) \, dx \)**: The expression is positive, so we can integrate directly: \[ \int_2^3 (x-1)(x-2)(x-3) \, dx = \int_2^3 (x^3 - 6x^2 + 11x - 6) \, dx \] Evaluating: \[ \int (x^3 - 6x^2 + 11x - 6) \, dx = \frac{x^4}{4} - 2x^3 + \frac{11x^2}{2} - 6x \Big|_2^3 \] Evaluating at \( x = 3 \): \[ \frac{81}{4} - 54 + \frac{99}{2} - 18 = \frac{81}{4} - 54 + \frac{198}{4} - \frac{72}{4} = \frac{207 - 216}{4} = -\frac{9}{4} \] Evaluating at \( x = 2 \): \[ \frac{16}{4} - 16 + 22 - 12 = 4 - 16 + 22 - 12 = -2 \] Thus, \[ \int_2^3 (x-1)(x-2)(x-3) \, dx = -\frac{9}{4} + 2 = -\frac{1}{4} \] ### Step 5: Combine results Now we combine the results: \[ \int_1^3 |(x-1)(x-2)(x-3)| \, dx = -0.25 - (-\frac{1}{4}) = -0.25 + 0.25 = 0 \] ### Final Answer The value of \( \int_1^3 |(x-1)(x-2)(x-3)| \, dx \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int(3x)/((x-1)(x-2)(x-3))dx

int 1/((x-1)(x+2)(2x-3))dx

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

The value of int ( x^3-1)/x^2 dx

The value of int_(1)^(3)(dx)/(x(1+x^(2))) is

int_1^3 (dx)/(x^2(1+x))

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

The value of int_(-a)^(a)1/(x+x^(3))dx is

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. The value of int1^3|(x-1)(x-2)(x-3)|dx is

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |