Home
Class 12
MATHS
The value of int(-pi)^pi(cos^2x)/(1+a^x)...

The value of `int_(-pi)^pi(cos^2x)/(1+a^x)dx,agt0`, is

A

`pi`

B

`api`

C

`pi//2`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \] we will utilize the property of definite integrals and some trigonometric identities. ### Step 1: Use the property of definite integrals We know that \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] for any function \( f(x) \). We will apply this property by substituting \( x \) with \( -x \): \[ I = \int_{-\pi}^{\pi} \frac{\cos^2(-x)}{1 + a^{-x}} \, dx \] ### Step 2: Simplify the integral Using the fact that \( \cos(-x) = \cos(x) \), we have: \[ I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + \frac{1}{a^x}} \, dx = \int_{-\pi}^{\pi} \frac{\cos^2 x}{\frac{a^x + 1}{a^x}} \, dx = \int_{-\pi}^{\pi} \frac{a^x \cos^2 x}{a^x + 1} \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \) 2. \( I = \int_{-\pi}^{\pi} \frac{a^x \cos^2 x}{a^x + 1} \, dx \) Adding these two equations gives: \[ 2I = \int_{-\pi}^{\pi} \left( \frac{\cos^2 x}{1 + a^x} + \frac{a^x \cos^2 x}{a^x + 1} \right) \, dx \] ### Step 4: Simplify the integrand We can simplify the integrand: \[ \frac{\cos^2 x}{1 + a^x} + \frac{a^x \cos^2 x}{a^x + 1} = \cos^2 x \left( \frac{1}{1 + a^x} + \frac{a^x}{a^x + 1} \right) \] Notice that: \[ \frac{1}{1 + a^x} + \frac{a^x}{a^x + 1} = 1 \] Thus, we have: \[ 2I = \int_{-\pi}^{\pi} \cos^2 x \, dx \] ### Step 5: Evaluate the integral Now we need to evaluate \( \int_{-\pi}^{\pi} \cos^2 x \, dx \). We can use the identity: \[ \cos^2 x = \frac{1 + \cos(2x)}{2} \] So, \[ \int_{-\pi}^{\pi} \cos^2 x \, dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2x)}{2} \, dx = \frac{1}{2} \int_{-\pi}^{\pi} 1 \, dx + \frac{1}{2} \int_{-\pi}^{\pi} \cos(2x) \, dx \] The first integral evaluates to: \[ \frac{1}{2} \cdot (2\pi) = \pi \] The second integral, \( \int_{-\pi}^{\pi} \cos(2x) \, dx = 0 \) (since cosine is an even function over a symmetric interval). Thus, \[ \int_{-\pi}^{\pi} \cos^2 x \, dx = \pi \] ### Step 6: Solve for \( I \) Now substituting back, we get: \[ 2I = \pi \implies I = \frac{\pi}{2} \] ### Final Answer The value of the integral is \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(2))dx,a gt 0 , is

The value of int_(-pi)^( pi)(cos^(2)x)/(1+a^(x))*dx,a>0 is

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x)dx where agt 0, is

int_(-pi)^( pi)(cos^(2)x)/(1+2^(x))dx

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

The value of int_(0)^(2pi)cos^(99)x dx is

The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

int_0^pi (cos^2x)dx ,

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. The value of int(-pi)^pi(cos^2x)/(1+a^x)dx,agt0, is

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |