Home
Class 12
MATHS
int(-pi//2)^(pi//2)sin^(10)x(6x^9-25x^7+...

`int_(-pi//2)^(pi//2)sin^(10)x(6x^9-25x^7+4x^3-2x)dx` is equal to

A

`pi`

B

`0`

C

25

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{10}(x) (6x^9 - 25x^7 + 4x^3 - 2x) \, dx, \] we will use the property of definite integrals involving odd and even functions. ### Step 1: Identify the function inside the integral Let \[ f(x) = \sin^{10}(x) (6x^9 - 25x^7 + 4x^3 - 2x). \] ### Step 2: Check if \( f(x) \) is an odd function To determine if \( f(x) \) is odd, we need to compute \( f(-x) \): \[ f(-x) = \sin^{10}(-x) (6(-x)^9 - 25(-x)^7 + 4(-x)^3 - 2(-x)). \] Using the properties of sine and powers of \( x \): \[ \sin(-x) = -\sin(x) \quad \text{and} \quad (-x)^n = -x^n \text{ for odd } n, \] we have: \[ f(-x) = \sin^{10}(x) (-6x^9 + 25x^7 - 4x^3 + 2x). \] ### Step 3: Simplify \( f(-x) \) This simplifies to: \[ f(-x) = \sin^{10}(x) (-1) (6x^9 - 25x^7 + 4x^3 - 2x) = -f(x). \] ### Step 4: Conclude that \( f(x) \) is odd Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 5: Evaluate the integral The integral of an odd function over a symmetric interval around zero is zero: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = 0. \] ### Final Answer Thus, the value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)sin^(7)x dx=

int_(-pi/2)^(pi/2)sin^(9) x dx

int_(-pi/2)^(pi/2) sin^(7) x dx

int_((-pi)/(2))^((pi)/(2))sin^(7)x dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int _(-pi//2)^(pi//2) sin^(4) x cos^(6) x dx is equal to

The value of int_(-pi) ^(pi) (sin ^(2) x)/( 1 + 7 ^(x)) dx= is equal to

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. int(-pi//2)^(pi//2)sin^(10)x(6x^9-25x^7+4x^3-2x)dx is equal to

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |