Home
Class 12
MATHS
If phi(x)=int(1//x)^(sqrtx)sin(t^2)dt" t...

If `phi(x)=int_(1//x)^(sqrtx)sin(t^2)dt" then "phi'(1)` is equal to

A

sin 1

B

2 sin 1

C

`3//2` sin 1

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \phi'(1) \) where \( \phi(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \sin(t^2) \, dt \), we will use the Leibniz rule for differentiation under the integral sign. ### Step-by-Step Solution: 1. **Identify the Function and Limits**: \[ \phi(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \sin(t^2) \, dt \] Here, the lower limit \( g(x) = \frac{1}{x} \) and the upper limit \( h(x) = \sqrt{x} \). 2. **Apply Leibniz Rule**: According to Leibniz rule: \[ \phi'(x) = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x) \] where \( f(t) = \sin(t^2) \). 3. **Calculate \( h'(x) \) and \( g'(x) \)**: - For \( h(x) = \sqrt{x} \): \[ h'(x) = \frac{1}{2\sqrt{x}} \] - For \( g(x) = \frac{1}{x} \): \[ g'(x) = -\frac{1}{x^2} \] 4. **Evaluate \( f(h(x)) \) and \( f(g(x)) \)**: - \( f(h(x)) = f(\sqrt{x}) = \sin((\sqrt{x})^2) = \sin(x) \) - \( f(g(x)) = f\left(\frac{1}{x}\right) = \sin\left(\left(\frac{1}{x}\right)^2\right) = \sin\left(\frac{1}{x^2}\right) \) 5. **Substitute into the Leibniz Rule**: Now substituting these into the Leibniz formula: \[ \phi'(x) = \sin(x) \cdot \frac{1}{2\sqrt{x}} - \sin\left(\frac{1}{x^2}\right) \cdot \left(-\frac{1}{x^2}\right) \] Simplifying this gives: \[ \phi'(x) = \frac{\sin(x)}{2\sqrt{x}} + \frac{\sin\left(\frac{1}{x^2}\right)}{x^2} \] 6. **Evaluate \( \phi'(1) \)**: Now we need to evaluate \( \phi'(1) \): \[ \phi'(1) = \frac{\sin(1)}{2\sqrt{1}} + \frac{\sin(1)}{1^2} \] This simplifies to: \[ \phi'(1) = \frac{\sin(1)}{2} + \sin(1) = \frac{\sin(1)}{2} + \frac{2\sin(1)}{2} = \frac{3\sin(1)}{2} \] ### Final Answer: \[ \phi'(1) = \frac{3}{2} \sin(1) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

phi(x)=int_(1/x)^( sqrt(x))sin(t^(2))dt, then find the value of phi'(1)

If phi(x)=2cos^(-1)((2)/(sqrt(x)))+sin^(-1)((4sqrt(x-4))/(x)), then phi'(9) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If phi(x)=int(phi(x))^(-2)dx and phi(1)=0 then phi(x) is

If phi(x)=f(x)+xf'(x) then int phi(x)dx is equal to

If phi(x)=a^(x), then [phi(p)]^(3) is equal to:

Statement I phi(x)=int_(0)^(x)(3 sin t+4 cos t)dt,[(pi)/(6),(pi)/(3)]phi(x)- attains its maximum value at x=(pi)/(3). Statement II phi(x)int_(0)^(x)(3sint+4cost)dt,phi(x) is increasing function in [(pi)/(6),(pi)/(3)]

The intervals of increase of f(x) defined by f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt is equal to

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. If phi(x)=int(1//x)^(sqrtx)sin(t^2)dt" then "phi'(1) is equal to

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |