Home
Class 12
MATHS
lim(nrarroo)((r)^(1//n))/n equals...

`lim_(nrarroo)((r)^(1//n))/n` equals

A

e

B

`e^(-1)`

C

1

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{r^{1/n}}{n} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit: \[ \lim_{n \to \infty} \frac{r^{1/n}}{n} \] ### Step 2: Analyze \( r^{1/n} \) As \( n \) approaches infinity, we know that \( r^{1/n} \) approaches \( 1 \). This is because: \[ r^{1/n} = e^{\frac{\ln(r)}{n}} \quad \text{and as } n \to \infty, \frac{\ln(r)}{n} \to 0 \] Thus, \( r^{1/n} \to e^0 = 1 \). ### Step 3: Substitute the limit Now substituting this back into our limit expression, we have: \[ \lim_{n \to \infty} \frac{1}{n} \] ### Step 4: Evaluate the limit As \( n \) approaches infinity, \( \frac{1}{n} \) approaches \( 0 \). Therefore: \[ \lim_{n \to \infty} \frac{1}{n} = 0 \] ### Conclusion Thus, the final result is: \[ \lim_{n \to \infty} \frac{r^{1/n}}{n} = 0 \] ### Summary of Steps 1. Rewrite the limit expression. 2. Analyze \( r^{1/n} \) as \( n \to \infty \). 3. Substitute the limit into the expression. 4. Evaluate the limit to find the final answer.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

lim_(ntooo) ((n!)^(1//n))/(n) equals

If I_n=int_0^(pi/4) tan^nx then lim_(nrarroo)n(I_n+I_(n-2)) equals (A) 1/2 (B) 1 (C) oo (D) 0

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Let for all x gt 0, f(x)=lim_(nrarroo)n^((x^((1)/(n))-1)) , then

If agt0, b gt0 than lim_(nrarroo) ((a-1+b^((1)/(n)))/(a))^(n)=

The value of lim_(nrarroo)((e^((1)/(n)))/(n^(2))+(2e^((2)/(n)))/(n^(2))+(3e^((3)/(n)))/(n^(2))+…+(2e^(2))/(n)) is

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

lim_(nrarroo) (1-x+x.root n e)^(n) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)((2r)/(n^(2)))e^((r^(2))/(n^(2))) is equal to

BITSAT GUIDE-DEFINITE INTEGRALS AND ITS APPLICATIONS-BITSAT Archives
  1. lim(nrarroo)((r)^(1//n))/n equals

    Text Solution

    |

  2. The value of x gt 1 satisfying the equation int(1)^(x) tlnt dt=(1)/(...

    Text Solution

    |

  3. If int0^25e^(x-[x])dx=k(e-1), then the value of k is equal to

    Text Solution

    |

  4. The area bounded by the curves y=-sqrt(-x) and x=-sqrt(-y), where x,yg...

    Text Solution

    |

  5. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  6. Determine the area of the figure bounded by two branches of the curve ...

    Text Solution

    |

  7. int0^(pi//2)(sin^ntheta)/(sin^ntheta+cos^ntheta)dtheta is equal to

    Text Solution

    |

  8. int0^(pi) cos^(101)x dx is equal to

    Text Solution

    |

  9. underset(nrarroo)lim[1/(n+1)+1/(n+1)+...+1/(6n)] equals

    Text Solution

    |

  10. If d/(dx){phi(x)}=f(x)," then "int1^2f(x)dx is equal to

    Text Solution

    |

  11. int0^2|1-x|dx is equal to

    Text Solution

    |

  12. The area bouded by X-axis and the curve y -= sinx and x = 0, x=pi is

    Text Solution

    |

  13. int0^1|5x-3|dx

    Text Solution

    |

  14. The area of the region bounded by y=|x-1| and y =1 is

    Text Solution

    |

  15. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  16. int (-pi//2)^(pi//2) sin | x | dx is equal to

    Text Solution

    |

  17. The area (in sq units) of the region bounded by the curve 2x=y^2-1 and...

    Text Solution

    |

  18. int0^8|x-5|dx is equal to

    Text Solution

    |

  19. If l1=int0^12^xdx,l2=int0^12^(x^3)dx,,l3=int1^22^(x^2)dx,l4=int1^22^(x...

    Text Solution

    |

  20. The area of the region satisfying xle2,yle|x| and xge0 is

    Text Solution

    |

  21. int0^(pi//4)log(1+tanx)dx is equal to

    Text Solution

    |