Home
Class 12
MATHS
int0^(pi//4)log(1+tanx)dx is equal to...

`int_0^(pi//4)log(1+tanx)dx` is equal to

A

`pi/8log_e2`

B

`pi/4log_2e`

C

`pi/4log_e2`

D

`pi/8log_e(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \), we can use a property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \] ### Step 2: Use the Property of Logarithms Using the property of logarithms, we can express the integral as: \[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx = \int_0^{\frac{\pi}{4}} \log\left(1 + \tan\left(\frac{\pi}{4} - x\right)\right) \, dx \] Since \( \tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x} \), we can rewrite the integral. ### Step 3: Simplify the Integral Thus, we have: \[ I = \int_0^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) \, dx \] This simplifies to: \[ I = \int_0^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan x}\right) \, dx \] ### Step 4: Split the Integral Now we can split the logarithm: \[ I = \int_0^{\frac{\pi}{4}} \log 2 \, dx - \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx \] This gives us: \[ I = \frac{\pi}{4} \log 2 - I \] ### Step 5: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = \frac{\pi}{4} \log 2 \] Thus, \[ I = \frac{\pi}{8} \log 2 \] ### Final Answer Therefore, the value of the integral is: \[ \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \, dx = \frac{\pi}{8} \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS AND ITS APPLICATIONS

    BITSAT GUIDE|Exercise BITSAT Archives |25 Videos
  • CONIC SECTIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |27 Videos
  • DETERMINANTS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |13 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

What is int_(0)^(pi/2) ln(tanx) dx equal to ?

The value of int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

The value of int_(0)^(pi/4) sqrt(tanx) dx+int_(0)^(pi/4) sqrt(cotx) dx is equal to

int_(0)^(pi//4) log (1+tan x) dx =?

int_(0)^((pi)/(4))log sin2xdx equals to

int_0^21/(1+tanx)dx is equal to (pi^)/4 (b) (pi^)/3 (c) (pi^)/2 (d) pi