Home
Class 12
MATHS
The linear programming problem Maximise ...

The linear programming problem Maximise `Z= x_(1)+x_(2)`
Subject to constraints
`{:(x_(1)+2x_(2) le 2000),(x_(1)+x_(2) le 1500),(x_(2) le 600),(x_(1) ge 0):}` has

A

no feasible solution

B

unique optimal solution

C

a finite number of optimal solutions

D

infinite number of optimal solutions

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem of maximizing \( Z = x_1 + x_2 \) subject to the given constraints, we will follow these steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x_1 + 2x_2 \leq 2000 \) 2. \( x_1 + x_2 \leq 1500 \) 3. \( x_2 \leq 600 \) 4. \( x_1 \geq 0 \) ### Step 2: Convert Inequalities to Equations To graph the constraints, we convert the inequalities into equations: 1. \( x_1 + 2x_2 = 2000 \) 2. \( x_1 + x_2 = 1500 \) 3. \( x_2 = 600 \) 4. \( x_1 = 0 \) ### Step 3: Find Intercepts for Each Constraint **For the first constraint \( x_1 + 2x_2 = 2000 \):** - If \( x_1 = 0 \), then \( 2x_2 = 2000 \) → \( x_2 = 1000 \) (Point: \( (0, 1000) \)) - If \( x_2 = 0 \), then \( x_1 = 2000 \) (Point: \( (2000, 0) \)) **For the second constraint \( x_1 + x_2 = 1500 \):** - If \( x_1 = 0 \), then \( x_2 = 1500 \) (Point: \( (0, 1500) \)) - If \( x_2 = 0 \), then \( x_1 = 1500 \) (Point: \( (1500, 0) \)) **For the third constraint \( x_2 = 600 \):** - This is a horizontal line at \( x_2 = 600 \). ### Step 4: Graph the Constraints Plot the points on a graph: - Plot \( (0, 1000) \) and \( (2000, 0) \) for the first constraint. - Plot \( (0, 1500) \) and \( (1500, 0) \) for the second constraint. - Draw a horizontal line at \( x_2 = 600 \). ### Step 5: Identify the Feasible Region The feasible region is the area that satisfies all constraints simultaneously. It will be bounded by the lines we have drawn. The feasible region will be the area where all the constraints overlap. ### Step 6: Determine the Corner Points Identify the corner points of the feasible region: 1. Intersection of \( x_1 + 2x_2 = 2000 \) and \( x_2 = 600 \): - Substitute \( x_2 = 600 \) into \( x_1 + 2(600) = 2000 \) → \( x_1 + 1200 = 2000 \) → \( x_1 = 800 \) (Point: \( (800, 600) \)) 2. Intersection of \( x_1 + x_2 = 1500 \) and \( x_2 = 600 \): - Substitute \( x_2 = 600 \) into \( x_1 + 600 = 1500 \) → \( x_1 = 900 \) (Point: \( (900, 600) \)) 3. Intersection of \( x_1 + x_2 = 1500 \) and \( x_1 + 2x_2 = 2000 \): - Solve the equations: - From \( x_1 + x_2 = 1500 \), we get \( x_1 = 1500 - x_2 \). - Substitute into \( x_1 + 2x_2 = 2000 \): - \( (1500 - x_2) + 2x_2 = 2000 \) → \( 1500 + x_2 = 2000 \) → \( x_2 = 500 \) → \( x_1 = 1000 \) (Point: \( (1000, 500) \)) ### Step 7: Evaluate the Objective Function at Each Corner Point Evaluate \( Z = x_1 + x_2 \) at each corner point: 1. At \( (800, 600) \): \( Z = 800 + 600 = 1400 \) 2. At \( (900, 600) \): \( Z = 900 + 600 = 1500 \) 3. At \( (1000, 500) \): \( Z = 1000 + 500 = 1500 \) ### Step 8: Determine the Maximum Value The maximum value of \( Z \) is \( 1500 \) which occurs at the points \( (900, 600) \) and \( (1000, 500) \). ### Conclusion The linear programming problem has an infinite number of optimal solutions along the line segment connecting the points \( (900, 600) \) and \( (1000, 500) \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos

Similar Questions

Explore conceptually related problems

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has

The iinear programming problem Maximise Z=x_1 +x_2 Subject to constraints x_1+2x_2 le le 2000 x_1+ x_2 le 15000 x_2 le 600 x_1 ge has

By graphical method, the solutions of linear programming problem maximise Z=3x_(1)+5x_(2) subject to constraints 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 are

By graphical method, the solutions of linear programming problem maximum Z = 3x_1 + 5x_2 subject to constraints 3x_1+2x_2 le 18 x_1 le 4, x_2 le 6,x_1 ge 0, x_2 ge 0

Solve the linear programming problem. Maximise Z = x + 2y Subject to constraints x - y le 10, 2x +3y le 20 and x ge 0, y ge 0

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

Maximize z = x_(1) + 3x_(2) Subject to 3x_(1) + 6x_(2) le 8 5x_(1) + 2x_(2) le 10 and x_(1), x_(2) ge 0

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

Solve the following Linear Programming Problem graphically maximize Z=2x_(1)+3x_(2) subject to constraints x_(2) =0,x_(2)>=0

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0