Home
Class 12
MATHS
The objective function Z= 30x+20y, subje...

The objective function `Z= 30x+20y`, subject to constraints `x+y le 8, x+2y ge 4, 6x+4y ge 12, x ge 0, y ge 0`, has

A

unique solution

B

infinitely many solutions

C

minimum at (4, 0)

D

minimum 60 at point (0, 3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem given by the objective function \( Z = 30x + 20y \) subject to the constraints: 1. \( x + y \leq 8 \) 2. \( x + 2y \geq 4 \) 3. \( 6x + 4y \geq 12 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) we will follow these steps: ### Step 1: Graph the Constraints We need to graph the constraints to find the feasible region. 1. **For \( x + y \leq 8 \)**: - When \( x = 0 \), \( y = 8 \) (Point A: (0, 8)) - When \( y = 0 \), \( x = 8 \) (Point B: (8, 0)) - The line will connect points A and B. 2. **For \( x + 2y \geq 4 \)**: - When \( x = 0 \), \( y = 2 \) (Point C: (0, 2)) - When \( y = 0 \), \( x = 4 \) (Point D: (4, 0)) - The line will connect points C and D. 3. **For \( 6x + 4y \geq 12 \)**: - When \( x = 0 \), \( y = 3 \) (Point E: (0, 3)) - When \( y = 0 \), \( x = 2 \) (Point F: (2, 0)) - The line will connect points E and F. ### Step 2: Determine the Feasible Region Next, we identify the feasible region that satisfies all the constraints. This is the area where all the shaded regions from the inequalities overlap. ### Step 3: Identify Corner Points The feasible region will typically be a polygon. We need to find the corner points (vertices) of this polygon, which are the intersection points of the lines. 1. **Intersection of \( x + y = 8 \) and \( x + 2y = 4 \)**: - Solve the equations: \[ x + y = 8 \quad (1) \] \[ x + 2y = 4 \quad (2) \] - From (1), \( y = 8 - x \). - Substitute into (2): \[ x + 2(8 - x) = 4 \implies x + 16 - 2x = 4 \implies -x + 16 = 4 \implies x = 12 \quad \text{(not feasible)} \] 2. **Intersection of \( x + y = 8 \) and \( 6x + 4y = 12 \)**: - Solve the equations: \[ x + y = 8 \quad (1) \] \[ 6x + 4y = 12 \quad (3) \] - From (1), \( y = 8 - x \). - Substitute into (3): \[ 6x + 4(8 - x) = 12 \implies 6x + 32 - 4x = 12 \implies 2x + 32 = 12 \implies 2x = -20 \quad \text{(not feasible)} \] 3. **Intersection of \( x + 2y = 4 \) and \( 6x + 4y = 12 \)**: - Solve the equations: \[ x + 2y = 4 \quad (2) \] \[ 6x + 4y = 12 \quad (3) \] - From (2), \( y = \frac{4 - x}{2} \). - Substitute into (3): \[ 6x + 4\left(\frac{4 - x}{2}\right) = 12 \implies 6x + 8 - 2x = 12 \implies 4x + 8 = 12 \implies 4x = 4 \implies x = 1 \] - Substitute \( x = 1 \) back into (2): \[ 1 + 2y = 4 \implies 2y = 3 \implies y = 1.5 \] - Intersection point is \( (1, 1.5) \). ### Step 4: Evaluate the Objective Function at the Corner Points Evaluate \( Z = 30x + 20y \) at the feasible corner points: 1. At \( (0, 8) \): \[ Z = 30(0) + 20(8) = 160 \] 2. At \( (4, 0) \): \[ Z = 30(4) + 20(0) = 120 \] 3. At \( (1, 1.5) \): \[ Z = 30(1) + 20(1.5) = 30 + 30 = 60 \] ### Step 5: Determine Maximum and Minimum Values From the evaluations, we find: - Maximum \( Z = 160 \) at \( (0, 8) \) - Minimum \( Z = 60 \) at \( (1, 1.5) \) ### Conclusion The minimum value of \( Z \) is \( 60 \) at the point \( (1, 1.5) \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 3, 3x + 4y ge 12, x ge 0, y ge 1

x +2y le 3, 3x + 4y ge 12 , x ge 0, y ge 1

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Determine graphically the minimum value of the objective function: Z = -50x + 20y subject to the constraints: 2x - y ge -5, 3x + y ge 3, 2x - 3y le 12, x, y ge 0 .

Minimize Z = 2x + 3y subject to constraints x + y ge 6 , 2x + y ge 7, x + 4y ge 8 , x ge 0 , y ge 0

Determine graphically the minimum value of the objective function z = - 50x + 20 y, subject to he constraints. 2x - y ge - 5 3x + y ge 3 2x - 3y le 12 x ge 0, y ge 0

The minimum value of the objective function Z=x+2y Subject to the constraints, 2x+ y ge 3 , x +2y ge 6 , x, y ge 0 occurs

Minimize Z = x + 4y subject to constraints x + 3y ge 3 , 2x + y ge 2, x ge 0 , y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

Minimize Z = -3x + 4y subject ot constraints : x + 2y le 8, 3x + 2y le 12, x ge 0, y ge 0 .