Home
Class 12
MATHS
The maximum value of Z= 3x+5y, under the...

The maximum value of `Z= 3x+5y`, under the constraints `x+2y le 2000, x+y le 1500, y le 600" and "x, y ge 0`, is

A

5000

B

5500

C

6000

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the linear programming problem and find the maximum value of \( Z = 3x + 5y \) under the given constraints, we will follow these steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x + 2y \leq 2000 \) 2. \( x + y \leq 1500 \) 3. \( y \leq 600 \) 4. \( x \geq 0 \) 5. \( y \geq 0 \) ### Step 2: Convert Inequalities into Equations To find the feasible region, we convert the inequalities into equations: 1. \( x + 2y = 2000 \) 2. \( x + y = 1500 \) 3. \( y = 600 \) ### Step 3: Find the Intersection Points Next, we will find the intersection points of these lines: 1. **Intersection of \( x + 2y = 2000 \) and \( x + y = 1500 \)**: - From \( x + y = 1500 \), we can express \( x = 1500 - y \). - Substitute into the first equation: \[ 1500 - y + 2y = 2000 \implies 1500 + y = 2000 \implies y = 500 \] - Substitute \( y = 500 \) back to find \( x \): \[ x = 1500 - 500 = 1000 \] - So, the intersection point is \( (1000, 500) \). 2. **Intersection of \( x + 2y = 2000 \) and \( y = 600 \)**: - Substitute \( y = 600 \) into the first equation: \[ x + 2(600) = 2000 \implies x + 1200 = 2000 \implies x = 800 \] - So, the intersection point is \( (800, 600) \). 3. **Intersection of \( x + y = 1500 \) and \( y = 600 \)**: - Substitute \( y = 600 \) into the second equation: \[ x + 600 = 1500 \implies x = 900 \] - So, the intersection point is \( (900, 600) \). ### Step 4: Identify the Feasible Region The feasible region is determined by the constraints and the intersection points found. The vertices of the feasible region are: 1. \( (0, 0) \) 2. \( (1000, 500) \) 3. \( (800, 600) \) 4. \( (900, 600) \) ### Step 5: Evaluate the Objective Function at Each Vertex Now we will evaluate \( Z = 3x + 5y \) at each vertex: 1. At \( (0, 0) \): \[ Z = 3(0) + 5(0) = 0 \] 2. At \( (1000, 500) \): \[ Z = 3(1000) + 5(500) = 3000 + 2500 = 5500 \] 3. At \( (800, 600) \): \[ Z = 3(800) + 5(600) = 2400 + 3000 = 5400 \] 4. At \( (900, 600) \): \[ Z = 3(900) + 5(600) = 2700 + 3000 = 5700 \] ### Step 6: Determine the Maximum Value The maximum value of \( Z \) occurs at the point \( (1000, 500) \) and is: \[ \text{Maximum } Z = 5500 \] ### Final Answer The maximum value of \( Z = 3x + 5y \) under the given constraints is **5500**.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • MATRICES

    BITSAT GUIDE|Exercise BITSAT Archives |8 Videos

Similar Questions

Explore conceptually related problems

The maximum value of Z = 3x + 5y subjected to the constraints x + y le 2, 4x + 3y le 12, x ge 0, y ge 0 is

The maximum value of Z = 3x + 4y subject to the constraints: x + y le 4, x ge 0, y ge 0 is :

The maximum value P = 3x + 4y subjected to the constraints x + y le 40, x + 2y le 60, x ge 0 and y ge 0 is

Maximize Z=3x+5y, subject to the constraints x+2yle2000, x+yle1500, y le600, x ge0and yge0.

Maximum value of Z = 3x + 4y subject to the constraints x + y le 4, x ge 0, y ge 0 is 16.

x+2y le 100,2x +y le 120,x+y le 70 , x ge 0, y ge 0

The maximum value of Z = 4x + 2y subject to the constraints 2x+3y le 18,x+y ge 10, x , y ge 0 is