Home
Class 12
MATHS
If x^(2) = |(sin theta,cos theta,0),(-co...

If `x^(2) = |(sin theta,cos theta,0),(-cos theta,sin theta ,1),(sin theta,cos theta,2)|`, then the value of `4x^(2) + x "sin" (3pi)/(2) +5` is

A

`13- sqrt2`

B

`13 + sqrt2`

C

`sqrt2-13`

D

Both a and b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant and then find the value of the expression \(4x^2 + x \sin\left(\frac{3\pi}{2}\right) + 5\). ### Step 1: Calculate the Determinant We are given: \[ x^2 = \begin{vmatrix} \sin \theta & \cos \theta & 0 \\ -\cos \theta & \sin \theta & 1 \\ \sin \theta & \cos \theta & 2 \end{vmatrix} \] To calculate this determinant, we can use the formula for the determinant of a \(3 \times 3\) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \(a = \sin \theta\), \(b = \cos \theta\), \(c = 0\) - \(d = -\cos \theta\), \(e = \sin \theta\), \(f = 1\) - \(g = \sin \theta\), \(h = \cos \theta\), \(i = 2\) Calculating the determinant: \[ x^2 = \sin \theta \left(\sin \theta \cdot 2 - 1 \cdot \cos \theta\right) - \cos \theta \left(-\cos \theta \cdot 2 - 1 \cdot \sin \theta\right) + 0 \] This simplifies to: \[ x^2 = \sin \theta (2 \sin \theta - \cos \theta) + \cos \theta (2 \cos \theta + \sin \theta) \] ### Step 2: Simplify the Expression Now, simplifying further: \[ x^2 = 2 \sin^2 \theta - \sin \theta \cos \theta + 2 \cos^2 \theta + \sin \theta \cos \theta \] \[ x^2 = 2 \sin^2 \theta + 2 \cos^2 \theta = 2(\sin^2 \theta + \cos^2 \theta) = 2 \] Thus, we have: \[ x^2 = 2 \implies x = \sqrt{2} \text{ or } x = -\sqrt{2} \] ### Step 3: Evaluate the Expression Now we need to evaluate: \[ 4x^2 + x \sin\left(\frac{3\pi}{2}\right) + 5 \] First, calculate \(4x^2\): \[ 4x^2 = 4 \times 2 = 8 \] Next, calculate \(\sin\left(\frac{3\pi}{2}\right)\): \[ \sin\left(\frac{3\pi}{2}\right) = -1 \] Now substituting \(x = \sqrt{2}\): \[ 4x^2 + x \sin\left(\frac{3\pi}{2}\right) + 5 = 8 + \sqrt{2}(-1) + 5 = 8 - \sqrt{2} + 5 = 13 - \sqrt{2} \] Now substituting \(x = -\sqrt{2}\): \[ 4x^2 + x \sin\left(\frac{3\pi}{2}\right) + 5 = 8 - \sqrt{2}(-1) + 5 = 8 + \sqrt{2} + 5 = 13 + \sqrt{2} \] ### Final Result Thus, the values of the expression are: - For \(x = \sqrt{2}\): \(13 - \sqrt{2}\) - For \(x = -\sqrt{2}\): \(13 + \sqrt{2}\) Both values are possible, so the final answer is: \[ \text{Both } 13 - \sqrt{2} \text{ and } 13 + \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2019 BITSAT

    BITSAT GUIDE|Exercise PART -IV ( Mathematics ) |45 Videos
  • STATISTICS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |4 Videos

Similar Questions

Explore conceptually related problems

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

cos theta-cos3 theta+cos5 theta-cos7 theta=4sin theta sin4 theta cos2 theta

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

(sin3 theta-sin theta sin^(2)(2 theta))/(sin theta+sin2 theta cos theta)=cos x then x=

8sin theta cos theta cos2 theta cos4 theta=sin x the x=

8sin theta cos theta*cos2 theta cos4 theta=sin x rArr x=

8sin theta cos theta cos2 theta cos4 theta=sin x rArr x=

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

If (cos theta+cos2 theta)+sin2 theta(1+2cos theta)=2sin theta,theta in[-pi,pi] then

BITSAT GUIDE-SOLVED PAPER 2018-Mathematics (Part-IV)
  1. nth roots of Unity

    Text Solution

    |

  2. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |

  3. If x^(2) = |(sin theta,cos theta,0),(-cos theta,sin theta ,1),(sin the...

    Text Solution

    |

  4. The sides a,b,c of DeltaABC are in G.P., where loga-log2b,log2b-log3c,...

    Text Solution

    |

  5. If Sigma(r=1)^(n)t(r)= (n (n+1) (n+2) (n+3))/(8), where t(r) denotes t...

    Text Solution

    |

  6. Which of the following statement is a tautology?

    Text Solution

    |

  7. A parallelogram is cut by two sets of m lines parallel to its sides. T...

    Text Solution

    |

  8. The inverse of the functions f(x)=log(2)(x+sqrt(x^(2)+1)) is

    Text Solution

    |

  9. The value of S= Sigma(n=1)^(oo)"tan"^(-1) (2n)/(n^(4) + n^(2) +2) is e...

    Text Solution

    |

  10. For what value of k the equation sinx+cos(k+x)+cos(k-x)=2 has real sol...

    Text Solution

    |

  11. A line makes angles alpha, beta, gamma with the coordinate axes. If al...

    Text Solution

    |

  12. Straight lines 3x+4y=5 and 4x-3y= 15 intersect at the point A. If poin...

    Text Solution

    |

  13. Normals drawn to y^(2)=4ax at the points where it is intersected by th...

    Text Solution

    |

  14. The area of the triangle formed by joining the origin to the point of ...

    Text Solution

    |

  15. Radius of the largest circle passing through the focus of the parabola...

    Text Solution

    |

  16. A tangent drawn to hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2))=1 at P(...

    Text Solution

    |

  17. If the sum of squares of distances of a point from the planes x+y+z= 0...

    Text Solution

    |

  18. Line ((x+1))/(lamda) =y- 1=((z+2))/(-4) is perpendicular to 2x+2y - 8z...

    Text Solution

    |

  19. OPQR is a square with M and N as the middle points of the sides PQ and...

    Text Solution

    |

  20. The line passing through the extremity A of the major exis and extremi...

    Text Solution

    |