Home
Class 12
MATHS
If h is the altitude of a parallelopiped...

If h is the altitude of a parallelopiped determined by the vectors a,b,c and the base is taken to be the parallelogram determined by a and b where `a= hat(i) +hat(j) + hat(k), b= 2hat(i) + 4hat(j) - hat(k) and c= hat(i) +hat(j) + 3hat(k)`, then the value of `19h^(2)` is

A

19

B

16

C

8

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(19h^2\) where \(h\) is the altitude of the parallelepiped determined by the vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\). The base is taken to be the parallelogram determined by \(\mathbf{a}\) and \(\mathbf{b}\). ### Step 1: Define the vectors Given: \[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{b} = 2\hat{i} + 4\hat{j} - \hat{k} \] \[ \mathbf{c} = \hat{i} + \hat{j} + 3\hat{k} \] ### Step 2: Calculate the cross product \(\mathbf{a} \times \mathbf{b}\) To find the area of the base (the parallelogram), we need to compute \(\mathbf{a} \times \mathbf{b}\). Using the determinant form: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 4 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: - For \(\hat{i}\): \[ 1 \cdot (-1) - 1 \cdot 4 = -1 - 4 = -5 \] - For \(\hat{j}\): \[ 1 \cdot (-1) - 1 \cdot 2 = -1 - 2 = -3 \quad \text{(remember to change the sign)} \Rightarrow +3 \] - For \(\hat{k}\): \[ 1 \cdot 4 - 1 \cdot 2 = 4 - 2 = 2 \] Thus, \[ \mathbf{a} \times \mathbf{b} = -5\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 3: Calculate the magnitude of \(\mathbf{a} \times \mathbf{b}\) \[ |\mathbf{a} \times \mathbf{b}| = \sqrt{(-5)^2 + 3^2 + 2^2} = \sqrt{25 + 9 + 4} = \sqrt{38} \] ### Step 4: Calculate the volume of the parallelepiped The volume \(V\) of the parallelepiped is given by: \[ V = |\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})| \] Calculating the dot product: \[ \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = (\hat{i} + \hat{j} + 3\hat{k}) \cdot (-5\hat{i} + 3\hat{j} + 2\hat{k}) \] \[ = 1 \cdot (-5) + 1 \cdot 3 + 3 \cdot 2 = -5 + 3 + 6 = 4 \] Thus, the volume \(V = 4\). ### Step 5: Calculate the height \(h\) The height \(h\) can be calculated using the formula: \[ h = \frac{V}{\text{Area of base}} \] The area of the base is \( |\mathbf{a} \times \mathbf{b}| = \sqrt{38} \). So, \[ h = \frac{4}{\sqrt{38}} \] ### Step 6: Calculate \(19h^2\) Now, we find \(h^2\): \[ h^2 = \left(\frac{4}{\sqrt{38}}\right)^2 = \frac{16}{38} = \frac{8}{19} \] Now, calculate \(19h^2\): \[ 19h^2 = 19 \cdot \frac{8}{19} = 8 \] ### Final Answer The value of \(19h^2\) is \(8\).
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2019 BITSAT

    BITSAT GUIDE|Exercise PART -IV ( Mathematics ) |45 Videos
  • STATISTICS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |4 Videos

Similar Questions

Explore conceptually related problems

Find the altitude of a parallelepiped determined by the vectors vec a,vec b and vec c ,if the base is taken as the parallelogram determined by vec a and vec b, and if vec a=hat i+hat j+hat k,vec b=2hat i+4hat j-hat k and vec c=hat i+hat j+3hat k

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(k) and c=ma+nb , then m+n is equal to

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

Find the area of the parallelogram determined by the vectors: hat i-3hat j+hat k and hat i+hat j+hat k

Find the area of the parallelogram determined by the vectors: 2hat i+hat j+3hat k and hat i-hat j

BITSAT GUIDE-SOLVED PAPER 2018-Mathematics (Part-IV)
  1. Solution of differential equation (dy)/(dx)=sin (x+y)+cos(x+y) is e...

    Text Solution

    |

  2. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  3. An inverted conical flask is being filled with water at the rate of 3c...

    Text Solution

    |

  4. The equation of the curve whose slope at any point is equal to y+ 2x a...

    Text Solution

    |

  5. Let f(x)={(x^(p)"sin"1/x,x!=0),(0,x=0):} then f(x) is continuous but ...

    Text Solution

    |

  6. The solution y(x) of the differential equation (d^(2)y)/(dx^(2))=sin3x...

    Text Solution

    |

  7. For which interval the given function f(x)=2x^3-9x^2+12x+1 is decreasi...

    Text Solution

    |

  8. If theta is the angle between the vectors 4 (hat(i)- hat(k)) and hat(i...

    Text Solution

    |

  9. In a Delta ABC, D, E, F are the mid -points of the sides BC, CA and AB...

    Text Solution

    |

  10. The arithmetic mean of a set of observations is bar(X). If each observ...

    Text Solution

    |

  11. If h is the altitude of a parallelopiped determined by the vectors a,b...

    Text Solution

    |

  12. The mean and variance of a Binomial distribution (vec(BD)) for 3 trial...

    Text Solution

    |

  13. Let P(x)= int (dx)/(e^(x) + 8e^(-x) + 4e^(-3x)), Q(x)= int (dx)/(e^(3x...

    Text Solution

    |

  14. int0^1cot^(- 1)(1-x+x^2)dx

    Text Solution

    |

  15. The area of the region included between the curves x^2+y^2=a^2 and sqr...

    Text Solution

    |

  16. Aa n dB are two independent events. The probability that both Aa n dB ...

    Text Solution

    |

  17. In a test, an examinee either guesses or copies or knows the answer to...

    Text Solution

    |

  18. If p:4 is an even prime number, q:6 is a divisor of 12 and r: the HCF ...

    Text Solution

    |

  19. The maximum value of Z = 4x + 2y subject to the constraints 2x+3y le ...

    Text Solution

    |

  20. The coordinates of the point at which minimum value of Z= 7x- 8y subje...

    Text Solution

    |