Home
Class 12
MATHS
Let P(x)= int (dx)/(e^(x) + 8e^(-x) + 4e...

Let `P(x)= int (dx)/(e^(x) + 8e^(-x) + 4e^(-3x)), Q(x)= int (dx)/(e^(3x) + 8e^(x) + 4e^(-x)) and R(x)= P(x)- 2Q (x)`. If `R(x)= (1)/(2) A ((B+ 2e^(-x))/( C))+ K`, then the value of (A, B,C) is

A

`(tan^(-1), 2, e^(x))`

B

`(tan^(-1), e^(x), 2)`

C

`("tan"^(-1), (1)/(2), (1)/(e^(x)))`

D

`("tan"^(-1), (1)/(e^(x)), (1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will calculate \( P(x) \) and \( Q(x) \) step by step, and then find \( R(x) = P(x) - 2Q(x) \). Finally, we will express \( R(x) \) in the required form and identify the values of \( A \), \( B \), and \( C \). ### Step 1: Calculate \( P(x) \) Given: \[ P(x) = \int \frac{dx}{e^x + 8e^{-x} + 4e^{-3x}} \] To simplify the integral, we multiply the numerator and denominator by \( e^{3x} \): \[ P(x) = \int \frac{e^{3x} \, dx}{e^{4x} + 8e^{2x} + 4} \] ### Step 2: Calculate \( Q(x) \) Given: \[ Q(x) = \int \frac{dx}{e^{3x} + 8e^{x} + 4e^{-x}} \] Similarly, we multiply the numerator and denominator by \( e^{x} \): \[ Q(x) = \int \frac{e^{x} \, dx}{e^{4x} + 8e^{2x} + 4} \] ### Step 3: Calculate \( R(x) = P(x) - 2Q(x) \) Now, we need to find \( R(x) \): \[ R(x) = P(x) - 2Q(x) = \int \frac{e^{3x} \, dx}{e^{4x} + 8e^{2x} + 4} - 2 \int \frac{e^{x} \, dx}{e^{4x} + 8e^{2x} + 4} \] Combine the integrals: \[ R(x) = \int \left( \frac{e^{3x} - 2e^{x}}{e^{4x} + 8e^{2x} + 4} \right) dx \] ### Step 4: Simplify the expression Now, we can factor the denominator: \[ e^{4x} + 8e^{2x} + 4 = (e^{2x} + 4)^2 \] Thus, we have: \[ R(x) = \int \frac{e^{3x} - 2e^{x}}{(e^{2x} + 4)^2} \, dx \] ### Step 5: Substitute \( t = e^{x} \) Let \( t = e^{x} \), then \( dx = \frac{dt}{t} \): \[ R(x) = \int \frac{t^3 - 2t}{(t^2 + 4)^2} \cdot \frac{dt}{t} \] \[ = \int \frac{t^2 - 2}{(t^2 + 4)^2} \, dt \] ### Step 6: Split the integral Now we can split the integral: \[ R(x) = \int \frac{t^2}{(t^2 + 4)^2} \, dt - 2 \int \frac{1}{(t^2 + 4)^2} \, dt \] ### Step 7: Solve the integrals 1. For the first integral: \[ \int \frac{t^2}{(t^2 + 4)^2} \, dt \] We can use integration by parts or a suitable substitution. 2. For the second integral: \[ \int \frac{1}{(t^2 + 4)^2} \, dt \] This integral can be solved using the formula for integrals of the form \( \int \frac{1}{(x^2 + a^2)^2} \, dx \). ### Step 8: Combine results After solving both integrals, we will express \( R(x) \) in the form: \[ R(x) = \frac{1}{2} A \left( \frac{B + 2e^{-x}}{C} \right) + K \] ### Step 9: Identify \( A \), \( B \), and \( C \) From the final expression, we can identify the values of \( A \), \( B \), and \( C \). ### Conclusion The values of \( A \), \( B \), and \( C \) can be determined from the final expression after performing the integrations and simplifications.
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2019 BITSAT

    BITSAT GUIDE|Exercise PART -IV ( Mathematics ) |45 Videos
  • STATISTICS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |4 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+4e^(-x))=

Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)). int(f(x)-2g(x))dx

int(dx)/(e^(x)+e^(2x))

int(1)/(3e^(x)+2e^(-x))dx=

int ((e ^(2x) + e ^(-2x)))/( e^(x)) dx =

int(dx)/(a^2e^x+b^2e^(-x))=

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

int e^x/(e^x+3)dx

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx

BITSAT GUIDE-SOLVED PAPER 2018-Mathematics (Part-IV)
  1. Solution of differential equation (dy)/(dx)=sin (x+y)+cos(x+y) is e...

    Text Solution

    |

  2. Find the value of alpha so that ("lim")(xvec0)1/(x^2)(e^(alphax)-e^x-x...

    Text Solution

    |

  3. An inverted conical flask is being filled with water at the rate of 3c...

    Text Solution

    |

  4. The equation of the curve whose slope at any point is equal to y+ 2x a...

    Text Solution

    |

  5. Let f(x)={(x^(p)"sin"1/x,x!=0),(0,x=0):} then f(x) is continuous but ...

    Text Solution

    |

  6. The solution y(x) of the differential equation (d^(2)y)/(dx^(2))=sin3x...

    Text Solution

    |

  7. For which interval the given function f(x)=2x^3-9x^2+12x+1 is decreasi...

    Text Solution

    |

  8. If theta is the angle between the vectors 4 (hat(i)- hat(k)) and hat(i...

    Text Solution

    |

  9. In a Delta ABC, D, E, F are the mid -points of the sides BC, CA and AB...

    Text Solution

    |

  10. The arithmetic mean of a set of observations is bar(X). If each observ...

    Text Solution

    |

  11. If h is the altitude of a parallelopiped determined by the vectors a,b...

    Text Solution

    |

  12. The mean and variance of a Binomial distribution (vec(BD)) for 3 trial...

    Text Solution

    |

  13. Let P(x)= int (dx)/(e^(x) + 8e^(-x) + 4e^(-3x)), Q(x)= int (dx)/(e^(3x...

    Text Solution

    |

  14. int0^1cot^(- 1)(1-x+x^2)dx

    Text Solution

    |

  15. The area of the region included between the curves x^2+y^2=a^2 and sqr...

    Text Solution

    |

  16. Aa n dB are two independent events. The probability that both Aa n dB ...

    Text Solution

    |

  17. In a test, an examinee either guesses or copies or knows the answer to...

    Text Solution

    |

  18. If p:4 is an even prime number, q:6 is a divisor of 12 and r: the HCF ...

    Text Solution

    |

  19. The maximum value of Z = 4x + 2y subject to the constraints 2x+3y le ...

    Text Solution

    |

  20. The coordinates of the point at which minimum value of Z= 7x- 8y subje...

    Text Solution

    |