Home
Class 12
MATHS
The value of lim(x rarr (3pi)/(4)) (4sin...

The value of `lim_(x rarr (3pi)/(4)) (4sin^(2) x cosx - cos x + sinx)/(sin x + cos x ) ` is equal to

A

`-1`

B

0

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \[ \lim_{x \to \frac{3\pi}{4}} \frac{4\sin^2 x \cos x - \cos x + \sin x}{\sin x + \cos x}, \] we will follow these steps: ### Step 1: Evaluate the limit directly First, we substitute \( x = \frac{3\pi}{4} \) into the expression. - We know that: \[ \sin\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}. \] Substituting these values into the limit expression: - The numerator becomes: \[ 4\left(\frac{1}{\sqrt{2}}\right)^2\left(-\frac{1}{\sqrt{2}}\right) - \left(-\frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}}\right). \] Simplifying this: \[ = 4 \cdot \frac{1}{2} \cdot \left(-\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}} = 0. \] - The denominator becomes: \[ \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0. \] Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \] if \( f(c) = g(c) = 0 \). We need to differentiate the numerator and denominator. - **Numerator**: \( f(x) = 4\sin^2 x \cos x - \cos x + \sin x \) - Differentiate using the product and chain rules: \[ f'(x) = 4(2\sin x \cos x \cdot \cos x - \sin^2 x \sin x) + \sin x. \] Simplifying this gives: \[ = 8\sin x \cos^2 x - 4\sin^3 x + \cos x. \] - **Denominator**: \( g(x) = \sin x + \cos x \) - Differentiate: \[ g'(x) = \cos x - \sin x. \] ### Step 3: Evaluate the limit again Now we evaluate: \[ \lim_{x \to \frac{3\pi}{4}} \frac{8\sin x \cos^2 x - 4\sin^3 x + \cos x}{\cos x - \sin x}. \] Substituting \( x = \frac{3\pi}{4} \): - The new numerator: \[ 8\left(\frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}}\right)^2 - 4\left(\frac{1}{\sqrt{2}}\right)^3 + \left(-\frac{1}{\sqrt{2}}\right). \] Simplifying: \[ = 8 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{2} - 4 \cdot \frac{1}{2\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{4}{\sqrt{2}} - \frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{4 - 2 - 1}{\sqrt{2}} = \frac{1}{\sqrt{2}}. \] - The new denominator: \[ -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2}. \] Now we have: \[ \lim_{x \to \frac{3\pi}{4}} \frac{\frac{1}{\sqrt{2}}}{-\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{-1}{\sqrt{2}} = -\frac{1}{2}. \] ### Final Result Thus, the value of the limit is: \[ \boxed{-1}. \]
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2017

    BITSAT GUIDE|Exercise PART (IV) Mathematics)|45 Videos
  • SOLVED PAPER 2018

    BITSAT GUIDE|Exercise Mathematics (Part-IV)|45 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr (pi) / (2)) (sin2x) / (cos x)

The absolute value of quad lim_(x rarr((3 pi)/(4)))((4sin^(2)x cos x-cos x+sin x)/(sin x+cos x)) is

lim_ (x rarr (pi) / (2)) (sin (cos x) cos x) / (sin x-cos ecx)

Evaluate lim_(x rarr(pi)/(4))(1-sin2x)/(1+cos4x)

Evaluate lim_ (x rarr (pi) / (4)) (1-2sin2x) / (1 + cos4x)

lim_ (x rarr (pi) / (4)) (4sqrt (2) - (cos x + sin x) ^ (5)) / (1-sin2x)

lim_ (x rarr (pi) / (4)) (2sqrt (2) - (cos x + sin x) ^ (3)) / (1-sin2x) =

value of lim_(x rarr0)(1-cos^(3)x)/(x sin x*cos x) is

The value of lim_( x -> pi/4 ) (( sinx - cosx )) / ( x - pi/4 )

BITSAT GUIDE-SOLVED PAPER 2019 BITSAT-PART -IV ( Mathematics )
  1. The equation of plane containing line x - y = 1, z = 1 and parallel to...

    Text Solution

    |

  2. If (1+x+x^(2))^(20)= sum(r=0 )^(40) a(r) . x^( r) then sum(r=0)^(39) (...

    Text Solution

    |

  3. The value of lim(x rarr (3pi)/(4)) (4sin^(2) x cosx - cos x + sinx)/(s...

    Text Solution

    |

  4. If a, b, c are non-coplaner vectors such that bxx c = a, c xx a = b, ...

    Text Solution

    |

  5. The value of lambda for which the loci arg z = (pi)/(6) and | z-2 sqrt...

    Text Solution

    |

  6. The angle between the lines whose direction cosines satisfy the equ...

    Text Solution

    |

  7. The locus of the foot of prependicular drawn from the center of the el...

    Text Solution

    |

  8. If f and g are differentiable function in [0, 1] satisfying f (0) = 2 ...

    Text Solution

    |

  9. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  10. If the coefficients of x^3 and x^4 in the expansion of (1""+a x+b x...

    Text Solution

    |

  11. An equation of a plane parallel to the plane x-2y+2z-5=0 and at a unit...

    Text Solution

    |

  12. Three numbers are chosen at random without replacement from {1, 2, 3, ...

    Text Solution

    |

  13. The number of real number lambda for which the equality (sin(lamdaa...

    Text Solution

    |

  14. Suppose a parabola y=ax^(2)+bx +c has two x intercepts, one negative...

    Text Solution

    |

  15. The larger of two angles made with the X-axis of a straight line drawn...

    Text Solution

    |

  16. The point ([P + 1], [P]) (where, [x] is the greatest integer function)...

    Text Solution

    |

  17. Solution of the equation (dy)/(dx) = e^(x-y) (e^(x)-e^(y)) is equal t...

    Text Solution

    |

  18. The area bounded by two branches of the curve (y-x)^2= x^3 and x = 1 e...

    Text Solution

    |

  19. The least value of the function f(x) = int(0)^(x) ( 3 sinx + 4 cos x )...

    Text Solution

    |

  20. If z(1) and overline(z)(1) represent adjacent vertices of a regular po...

    Text Solution

    |