`98^(2)`=?

A

9604

B

9640

C

9654

D

8684

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \( 98^2 \), we can use the formula for the square of a binomial. Here’s the step-by-step solution: ### Step 1: Rewrite \( 98^2 \) We can express \( 98 \) as \( 100 - 2 \). Therefore, we can rewrite the expression: \[ 98^2 = (100 - 2)^2 \] ### Step 2: Apply the Binomial Square Formula Using the formula for the square of a binomial, \( (A - B)^2 = A^2 - 2AB + B^2 \), where \( A = 100 \) and \( B = 2 \): \[ (100 - 2)^2 = 100^2 - 2 \cdot 100 \cdot 2 + 2^2 \] ### Step 3: Calculate Each Term Now we calculate each term: - \( 100^2 = 10000 \) - \( 2^2 = 4 \) - \( 2 \cdot 100 \cdot 2 = 400 \) ### Step 4: Substitute Back into the Expression Substituting these values back into the expression gives us: \[ 98^2 = 10000 - 400 + 4 \] ### Step 5: Simplify the Expression Now we simplify: \[ 98^2 = 10000 + 4 - 400 \] \[ 98^2 = 10004 - 400 \] \[ 98^2 = 9604 \] ### Final Answer Thus, the value of \( 98^2 \) is: \[ \boxed{9604} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (9.8)^(2)

(50a^(2)-98b^(2))/(10a-14b)

Solve ((9.8)^(3)-(6.8)^(3))/(9.8^(2)+9.8xx6.8+6.8^(2))

The area of a parallelogram is 98cm^(2) lf one altitude is half the coresponding base determine the base and the altitude of the parallelogram.

If 8a^(2)+50b^(2)+98c^(2)-20ab-70bc-28ac=0 then show that 2a=5b=7c

If 4sin x+cos ec(z)/(7)=8, then the value of (98sin^(2)x+cos ec^(2)(x)/(8)) is-

'18ax^(^^)2-98ay^(^^)2'

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is