Home
Class 14
MATHS
(998)^(2)...

`(998)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (998)^2 \), we can use the formula for the square of a binomial, which is given by: \[ (a - b)^2 = a^2 - 2ab + b^2 \] In this case, we can express \( 998 \) as \( 1000 - 2 \). So, we can rewrite the expression as: \[ (998)^2 = (1000 - 2)^2 \] Now, we can apply the binomial square formula: 1. **Identify \( a \) and \( b \)**: - Here, \( a = 1000 \) and \( b = 2 \). 2. **Apply the formula**: \[ (1000 - 2)^2 = 1000^2 - 2 \cdot 1000 \cdot 2 + 2^2 \] 3. **Calculate each term**: - \( 1000^2 = 1000000 \) - \( 2 \cdot 1000 \cdot 2 = 8000 \) - \( 2^2 = 4 \) 4. **Substitute back into the equation**: \[ (1000 - 2)^2 = 1000000 - 8000 + 4 \] 5. **Perform the arithmetic**: - First, subtract \( 8000 \) from \( 1000000 \): \[ 1000000 - 8000 = 992000 \] - Then, add \( 4 \): \[ 992000 + 4 = 992004 \] Thus, the final result is: \[ (998)^2 = 992004 \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

(i) quad (998)^(3)

Melting point of RbBr (682^(@)C) is lesser than that of NaF (998^(@)C) . Explain.

Evaluate the following (i) i^(9) (ii) i^(342) (iii) i^(998) (iv) i^(-63) (v) (i^(3)+(1)/(i^(3)))

Find the coefficient of x^(50) after simplifying and collecting the like terms in the expansion of (1+x)^(1000)+x(1+x)^(999)+x^(2)(1+x)^(998)+...+x^(1000)

Evaluate : int_(-1)^(1)((2x^(332)+x^(998)+4x^(1668)*sin x^(691))/(1+x^(666)))dx