Home
Class 14
MATHS
(1012)^(2)...

`(1012)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (1012)^2 \), we can use the formula for squaring a binomial, which is \( (a + b)^2 = a^2 + 2ab + b^2 \). Here, we can break down \( 1012 \) into \( 1000 + 12 \). ### Step-by-Step Solution: 1. **Identify \( a \) and \( b \)**: Let \( a = 1000 \) and \( b = 12 \). 2. **Calculate \( a^2 \)**: \[ a^2 = (1000)^2 = 1000000 \] 3. **Calculate \( b^2 \)**: \[ b^2 = (12)^2 = 144 \] 4. **Calculate \( 2ab \)**: \[ 2ab = 2 \times 1000 \times 12 = 24000 \] 5. **Combine the results**: Now, we add all the calculated values together: \[ (1012)^2 = a^2 + 2ab + b^2 = 1000000 + 24000 + 144 \] 6. **Perform the addition**: \[ 1000000 + 24000 = 1024000 \] \[ 1024000 + 144 = 1024144 \] Thus, the final answer is: \[ (1012)^2 = 1024144 \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

A sample (A) of water boils at 100^@C whereas another same (B) of water boils at 101.2^(@)C . Identify the sample which will not freeze at 0^@C .

If A=[[1^(2),2^(2),3^(2)2^(2),3^(2),4^(2)3^(2),4^(2),5^(2)]] then |Adj A|=

The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4^(2),5^(2))| is

If A=[[1^(2),2^(2),3^(2)2^(2),3^(2),4^(2)3^(2),4^(2),5^(2)]] then |AdjA|=

Prove that matrix [((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))] is orthogonal.

Area of the quadrilateral formed with the foci of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (x^(2))/(a^(2))-(y^(2))/(b^(2))=-1( a) 4(a^(2)+b^(2))( b) 2(a^(2)+b^(2))( c) (a^(2)+b^(2))(d)(1)/(2)(a^(2)+b^(2))

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

The sum of the series (C(101,1))/(C(101,0)) + (2C(101,2))/(C(101,1))+(3C(101,3))/(C(101,2))+...+(101C(101,101))/(C(101,100))=