Home
Class 14
MATHS
The value of ((1)/(2)-:(1)/(2)"of "(1)/(...

The value of `((1)/(2)-:(1)/(2)"of "(1)/(2))/((1)/(2)+(1)/(2) "of"(1)/(2))` is

A

1

B

`1 (1)/(3)`

C

`2(2)/(3)`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\frac{1}{2} - \left(\frac{1}{2} \text{ of } \frac{1}{2}\right)}{\frac{1}{2} + \left(\frac{1}{2} \text{ of } \frac{1}{2}\right)}\), we will follow these steps: ### Step 1: Simplify the "of" operation The term \(\frac{1}{2} \text{ of } \frac{1}{2}\) can be simplified as: \[ \frac{1}{2} \text{ of } \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \] ### Step 2: Substitute back into the expression Now we substitute \(\frac{1}{4}\) back into the original expression: \[ \frac{\frac{1}{2} - \frac{1}{4}}{\frac{1}{2} + \frac{1}{4}} \] ### Step 3: Simplify the numerator For the numerator: \[ \frac{1}{2} - \frac{1}{4} = \frac{2}{4} - \frac{1}{4} = \frac{1}{4} \] ### Step 4: Simplify the denominator For the denominator: \[ \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \] ### Step 5: Form the new fraction Now we have: \[ \frac{\frac{1}{4}}{\frac{3}{4}} \] ### Step 6: Simplify the fraction To simplify \(\frac{\frac{1}{4}}{\frac{3}{4}}\), we multiply by the reciprocal of the denominator: \[ \frac{1}{4} \times \frac{4}{3} = \frac{1}{3} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

The value of (1)/(2+(1)/(2-(1)/(2-(1)/(2))))

The value of ((1)/(2)" of " 1(1)/(2))div(3(1)/(2)-1(1)/(4)) "of" 1(1)/(2)-1(1)/(2)div2(1)/(4)+1(1)/(3) is :

the value of sqrt(1(1)/(2)-[1(1)/(2)-1(1)/(2)+(1(1)/(2)-1(1)/(2)-1(1)/(4))]) is

The value of ((1)/(2)" of "1(1)/(2))-:(3(1)/(2)-1(1)/(4))" of "1(1)/(2)-1(1)/(2)-:2(1)/(4)+1(1)/(3) is:

The value of ((1)/(2)-:(1)/(2)backslash of(1)/(2))/((1)/(2)+(1)/(2)backslash of(1)/(2)) is (a) 1 (b) 1(1)/(3) (c) 2(2)/(3)(d)3

Find the value of 1-(1)/(2+(1)/(2-(1)/(2+(1)/(2))))

Find the value of 2+(1)/(2+(1)/(2+(1)/(2+...oo)))

Find the value of 2+1/(2+1/(2+1)