Home
Class 14
MATHS
(3(1)/(4)-(4)/(5) "of"(5)/(6))/(4(1)/(3)...

`(3(1)/(4)-(4)/(5) "of"(5)/(6))/(4(1)/(3)-: (1)/(5)-((3)/(10)+21(1)/(5)))`

A

`(1)/(6)`

B

`2(7)/(12)`

C

`15(1)/(2)`

D

`21(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression `(3(1)/(4)-(4)/(5) "of"(5)/(6))/(4(1)/(3)-: (1)/(5)-((3)/(10)+21(1)/(5)))`, we will break it down step by step. ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers into improper fractions. - \(3 \frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{12 + 1}{4} = \frac{13}{4}\) - \(4 \frac{1}{3} = \frac{4 \times 3 + 1}{3} = \frac{12 + 1}{3} = \frac{13}{3}\) - \(21 \frac{1}{5} = \frac{21 \times 5 + 1}{5} = \frac{105 + 1}{5} = \frac{106}{5}\) So, the expression becomes: \[ \frac{\left(\frac{13}{4} - \frac{4}{5} \cdot \frac{5}{6}\right)}{\left(\frac{13}{3} \div \frac{1}{5} - \left(\frac{3}{10} + \frac{106}{5}\right)\right)} \] ### Step 2: Simplify the Numerator Now we simplify the numerator: \[ \frac{13}{4} - \left(\frac{4}{5} \cdot \frac{5}{6}\right) \] Calculating \( \frac{4}{5} \cdot \frac{5}{6} = \frac{4 \cdot 5}{5 \cdot 6} = \frac{4}{6} = \frac{2}{3} \). Now, substituting back: \[ \frac{13}{4} - \frac{2}{3} \] To subtract these fractions, we need a common denominator, which is 12: \[ \frac{13}{4} = \frac{39}{12}, \quad \frac{2}{3} = \frac{8}{12} \] Thus, \[ \frac{39}{12} - \frac{8}{12} = \frac{31}{12} \] ### Step 3: Simplify the Denominator Now we simplify the denominator: \[ \frac{13}{3} \div \frac{1}{5} - \left(\frac{3}{10} + \frac{106}{5}\right) \] Calculating \( \frac{13}{3} \div \frac{1}{5} = \frac{13}{3} \cdot 5 = \frac{65}{3} \). Next, we simplify \( \frac{3}{10} + \frac{106}{5} \): To add these fractions, we need a common denominator, which is 10: \[ \frac{3}{10} + \frac{106}{5} = \frac{3}{10} + \frac{212}{10} = \frac{215}{10} \] Now substituting back into the denominator: \[ \frac{65}{3} - \frac{215}{10} \] Finding a common denominator (30): \[ \frac{65}{3} = \frac{650}{30}, \quad \frac{215}{10} = \frac{645}{30} \] Thus, \[ \frac{650}{30} - \frac{645}{30} = \frac{5}{30} = \frac{1}{6} \] ### Step 4: Final Calculation Now we have: \[ \frac{\frac{31}{12}}{\frac{1}{6}} = \frac{31}{12} \cdot 6 = \frac{31 \cdot 6}{12} = \frac{186}{12} = \frac{31}{2} \] ### Final Answer The final answer is: \[ \frac{31}{2} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

(3(1)/(4)-(4)/(5)(5)/(6))/(4(1)/(3)+(1)/(5)-((3)/(10)+21(1)/(5)))=?

4(4)/(5)-:(3)/(5) of 5+(4)/(5)xx(3)/(10)-(1)/(5)

(-(1)/(2)-(2)/(3)+(4)/(5)-(1)/(3)+(1)/(5)+(3)/(4))/((1)/(2)+(2)/(3)-(4)/(3)+(1)/(3)-(1)/(5)-(4)/(5)) is simplified to

Simplify : ((1)/(3)+(3)/(4)((2)/(5)-(1)/(3)))/(1(2)/(3) "of"(3)/(4)-(1)/(4)"of"(4)/(5))

5(1)/(6)-3(1)/(4)+3(1)/(3)+4

If A=[(2)/(3)1(5)/(3)(1)/(3)(2)/(3)(4)/(3)(7)/(3)2(2)/(3)] and B=[(2)/(3)(2)/(5)1(1)/(5)(2)/(5)(4)/(5)(4)/(5)(7)/(3)(6)/(5)(2)/(5)], then compute 3A_(-)=5B

1(5)/(6)+[2(2)/(3)-{3(3)/(4)(3(4)/(5)-:9(1)/(2))}]

[[1,0,-13,4,50,-6,-7]]=[[(1)/(10),(3)/(10),(1)/(5)(21)/(20),-(7)/(20),-(2)/(5)-(9)/(10),(3)/(10),(1)/(5)]]

(1)/(2)+(-(3)/(4))+(5)/(6)=(-(3)/(4))+(1)/(2)+...