Home
Class 14
MATHS
(7(1)/(2)-5(3)/(4) )/(3(1)/(2)+ ? )-:((1...

`(7(1)/(2)-5(3)/(4) )/(3(1)/(2)+ ? )-:((1)/(2)+1(1)/(4))/(1(1)/(5)+3(1)/(2))=0.6`

A

`4(1)/(3)`

B

`4(1)/(2)`

C

`4(2)/(3)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(7 \frac{1}{2} - 5 \frac{3}{4})}{(3 \frac{1}{2} + ?)} - \frac{(\frac{1}{2} + 1 \frac{1}{4})}{(1 \frac{1}{5} + 3 \frac{1}{2})} = 0.6 \] we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions Convert all mixed numbers to improper fractions: - \(7 \frac{1}{2} = \frac{15}{2}\) - \(5 \frac{3}{4} = \frac{23}{4}\) - \(3 \frac{1}{2} = \frac{7}{2}\) - \(1 \frac{1}{4} = \frac{5}{4}\) - \(1 \frac{1}{5} = \frac{6}{5}\) - \(3 \frac{1}{2} = \frac{7}{2}\) Now, substitute these values into the equation: \[ \frac{\left(\frac{15}{2} - \frac{23}{4}\right)}{\left(\frac{7}{2} + x\right)} - \frac{\left(\frac{1}{2} + \frac{5}{4}\right)}{\left(\frac{6}{5} + \frac{7}{2}\right)} = 0.6 \] ### Step 2: Simplify the Numerators 1. For the first numerator: \[ \frac{15}{2} - \frac{23}{4} = \frac{30}{4} - \frac{23}{4} = \frac{7}{4} \] 2. For the second numerator: \[ \frac{1}{2} + \frac{5}{4} = \frac{2}{4} + \frac{5}{4} = \frac{7}{4} \] ### Step 3: Simplify the Denominators 1. For the first denominator: \[ \frac{7}{2} + x \] 2. For the second denominator: \[ \frac{6}{5} + \frac{7}{2} = \frac{12}{10} + \frac{35}{10} = \frac{47}{10} \] ### Step 4: Substitute Back into the Equation Now, substitute these simplified values back into the equation: \[ \frac{\frac{7}{4}}{\frac{7}{2} + x} - \frac{\frac{7}{4}}{\frac{47}{10}} = 0.6 \] ### Step 5: Simplify the Second Fraction The second fraction simplifies to: \[ \frac{7}{4} \cdot \frac{10}{47} = \frac{70}{188} \] ### Step 6: Rewrite the Equation Now, the equation looks like: \[ \frac{7}{4(\frac{7}{2} + x)} - \frac{70}{188} = 0.6 \] ### Step 7: Clear the Fractions Multiply through by \(4(\frac{7}{2} + x)\) to eliminate the denominator: \[ 7 - \frac{70 \cdot 4(\frac{7}{2} + x)}{188} = 0.6 \cdot 4(\frac{7}{2} + x) \] ### Step 8: Solve for \(x\) Cross-multiply and simplify to isolate \(x\): 1. Rearranging gives us: \[ 7 = 0.6 \cdot 4(\frac{7}{2} + x) + \frac{280(\frac{7}{2} + x)}{188} \] 2. Solve for \(x\) to find the value. ### Final Step: Convert \(x\) to Mixed Fraction After solving, we find: \[ x = \frac{13}{3} \] Converting this back to a mixed fraction gives us: \[ 4 \frac{1}{3} \] ### Conclusion Thus, the value of \(x\) is: \[ \boxed{4 \frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

[4(1)/(5)-:{1(3)/(4)-(1)/(2)(3(1)/(2)-(1)/(4)-(1)/(6))}]

(7)/(8)-:(7(1)/(2)-5(1)/(6)-:2(3)/(4))+4(1)/(2)

1+((1)/(2)+(1)/(3))/((1)/(3)-(1)/(6))/2-((4)/(5)of(5)/(6))/((2)/(3))

4(1)/(3) - 3 (2)/3 -:1(1)/(3) + ? -: 3 (1)/(2) -: 1(1)/(5) =7

5(1)/(4)+6(2)/(3)+7(1)/(6)=?

([(3(1)/(4)-:{1(1)/(4)-0.5(2(1)/(2)-(1)/(4)-(1)/(6))))/(4xx(1)/(12))]

(-(1)/(2)-(2)/(3)+(4)/(5)-(1)/(3)+(1)/(5)+(3)/(4))/((1)/(2)+(2)/(3)-(4)/(3)+(1)/(3)-(1)/(5)-(4)/(5)) is simplified to

(1)/(2)+(-(3)/(4))+(5)/(6)=(-(3)/(4))+(1)/(2)+...