Home
Class 14
MATHS
The value of (1)/(2+(1)/(2-(1)/(2-(1)/(2...

The value of `(1)/(2+(1)/(2-(1)/(2-(1)/(2))))`

A

`(3)/(8) `

B

`(19)/(8)`

C

`(8)/(3)`

D

`(8)/(19)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{1}{2 + \frac{1}{2 - \frac{1}{2 - \frac{1}{2}}}} \), we will work from the innermost fraction outwards. ### Step 1: Simplify the innermost fraction Start with the innermost part of the expression: \[ \frac{1}{2} \] This is simply \( 0.5 \). ### Step 2: Substitute into the next layer Now substitute \( \frac{1}{2} \) into the next layer: \[ 2 - \frac{1}{2} = 2 - 0.5 = 1.5 \] So, we have: \[ \frac{1}{2 - \frac{1}{2}} = \frac{1}{1.5} = \frac{2}{3} \] ### Step 3: Substitute into the next layer Now substitute \( \frac{2}{3} \) into the next layer: \[ 2 + \frac{2}{3} = \frac{6}{3} + \frac{2}{3} = \frac{8}{3} \] ### Step 4: Substitute into the outermost layer Finally, substitute \( \frac{8}{3} \) into the outermost fraction: \[ \frac{1}{\frac{8}{3}} = \frac{3}{8} \] ### Final Answer Thus, the value of the expression \( \frac{1}{2 + \frac{1}{2 - \frac{1}{2 - \frac{1}{2}}}} \) is: \[ \frac{3}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1-(1)/(2+(1)/(2-(1)/(2+(1)/(2))))

Find the value of 2+(1)/(2+(1)/(2+(1)/(2+...oo)))

The value of ((1)/(2)-:(1)/(2)"of "(1)/(2))/((1)/(2)+(1)/(2) "of"(1)/(2)) is

the value of sqrt(1(1)/(2)-[1(1)/(2)-1(1)/(2)+(1(1)/(2)-1(1)/(2)-1(1)/(4))]) is

The value of ((1)/(2)" of "1(1)/(2))-:(3(1)/(2)-1(1)/(4))" of "1(1)/(2)-1(1)/(2)-:2(1)/(4)+1(1)/(3) is:

For a real number x,[x] denotes greatest integer function, then find value of [(1)/(2)]+[(1)/(2)+(1)/(100)]+[(1)/(2)+(2)/(100)]+...+[(1)/(2)+(99)/(100)]

The value of ((1)/(2)" of " 1(1)/(2))div(3(1)/(2)-1(1)/(4)) "of" 1(1)/(2)-1(1)/(2)div2(1)/(4)+1(1)/(3) is :