Home
Class 14
MATHS
Find the sum : (1)/(2) + (1)/(6) + (1)/(...

Find the sum : `(1)/(2) + (1)/(6) + (1)/(12) + (1)/(20) + (1)/(30 ) + (1)/(42) + (1)/(56) + (1)/(72) + (1)/(90) + (1)/(110) + (1)/(132)`

A

`(7)/(8)`

B

`(11)/(12)`

C

`(15)/(16)`

D

`(17)/(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110} + \frac{1}{132} \] we can first observe the denominators. The denominators can be expressed as products of consecutive integers: - \(2 = 1 \cdot 2\) - \(6 = 2 \cdot 3\) - \(12 = 3 \cdot 4\) - \(20 = 4 \cdot 5\) - \(30 = 5 \cdot 6\) - \(42 = 6 \cdot 7\) - \(56 = 7 \cdot 8\) - \(72 = 8 \cdot 9\) - \(90 = 9 \cdot 10\) - \(110 = 10 \cdot 11\) - \(132 = 11 \cdot 12\) This suggests that we can express each term as: \[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \] Thus, we can rewrite the sum \(S\) as follows: \[ S = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \left( \frac{1}{4} - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{6} \right) + \left( \frac{1}{6} - \frac{1}{7} \right) + \left( \frac{1}{7} - \frac{1}{8} \right) + \left( \frac{1}{8} - \frac{1}{9} \right) + \left( \frac{1}{9} - \frac{1}{10} \right) + \left( \frac{1}{10} - \frac{1}{11} \right) + \left( \frac{1}{11} - \frac{1}{12} \right) \] Notice that this is a telescoping series, where most terms cancel out: \[ S = 1 - \frac{1}{12} \] Calculating this gives: \[ S = 1 - \frac{1}{12} = \frac{12}{12} - \frac{1}{12} = \frac{11}{12} \] Thus, the sum of the series is \[ \boxed{\frac{11}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the following (1)/(9)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+(1)/(42)+(1)/(56)+(1)/(72)

What is the answer (1)/(6) +(1)/(12) +(1)/(20) +(1)/(30) +(1)/(42) +(1)/(56) ?

Find the value of: (1)/(30)+(1)/(42)+(1)/(56)+(1)/(72)+(1)/(90)+(1)/(110)

20(1)/(2) +30 (1)/(3) - 15(1)/(6) = ?

Find the sum: 1 1/6 + 3 1/6

Find the sum 2(1)/(3)+1(1)/(4)+2(5)/(6)+3(7)/(12)

Find the sum : (a) 1 1/4+1 1/2 (b) 1 1/4+2 1/3

Simplify : 1/2 + 1/6 + 1/(12) + 1/(20)