Home
Class 14
MATHS
Find the value of v : 10 (1)/(2) - [8(...

Find the value of v :
`10 (1)/(2) - [8(1)/(2) + { 7 - bar(6-4)}] bar(6-4)`=2 (v)

A

-3

B

-2

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation step by step, we will follow the order of operations as per BODMAS/BIDMAS rules, which stands for Brackets, Orders (i.e., powers and roots, etc.), Division and Multiplication (from left to right), Addition and Subtraction (from left to right). Given equation: \[ 10 \frac{1}{2} - \left[ 8 \frac{1}{2} + \{ 7 - \bar{(6-4)} \} \right] \bar{(6-4)} = 2v \] ### Step 1: Simplify the bar notation The bar notation indicates that we should calculate the value inside the bar first. Here, we have: \[ \bar{(6-4)} = 2 \] So we can replace \(\bar{(6-4)}\) with \(2\). ### Step 2: Substitute the value Now, substitute \(2\) into the equation: \[ 10 \frac{1}{2} - \left[ 8 \frac{1}{2} + \{ 7 - 2 \} \right] \cdot 2 = 2v \] ### Step 3: Calculate the expression inside the brackets First, calculate \(7 - 2\): \[ 7 - 2 = 5 \] Now substitute this back into the equation: \[ 10 \frac{1}{2} - \left[ 8 \frac{1}{2} + 5 \right] \cdot 2 = 2v \] ### Step 4: Calculate the mixed numbers Convert the mixed numbers to improper fractions: \[ 10 \frac{1}{2} = \frac{21}{2} \] \[ 8 \frac{1}{2} = \frac{17}{2} \] ### Step 5: Substitute the improper fractions Now substitute these values back into the equation: \[ \frac{21}{2} - \left[ \frac{17}{2} + 5 \right] \cdot 2 = 2v \] ### Step 6: Calculate the expression inside the brackets Convert \(5\) to a fraction: \[ 5 = \frac{10}{2} \] Now substitute: \[ \frac{21}{2} - \left[ \frac{17}{2} + \frac{10}{2} \right] \cdot 2 = 2v \] ### Step 7: Combine the fractions Combine the fractions inside the brackets: \[ \frac{17}{2} + \frac{10}{2} = \frac{27}{2} \] Now substitute this back: \[ \frac{21}{2} - \left[ \frac{27}{2} \right] \cdot 2 = 2v \] ### Step 8: Multiply by 2 Now multiply \(\frac{27}{2}\) by \(2\): \[ \frac{27}{2} \cdot 2 = 27 \] So the equation becomes: \[ \frac{21}{2} - 27 = 2v \] ### Step 9: Convert \(27\) to a fraction Convert \(27\) to a fraction: \[ 27 = \frac{54}{2} \] Now substitute: \[ \frac{21}{2} - \frac{54}{2} = 2v \] ### Step 10: Subtract the fractions Now perform the subtraction: \[ \frac{21 - 54}{2} = 2v \] \[ \frac{-33}{2} = 2v \] ### Step 11: Divide by 2 Now divide both sides by \(2\): \[ v = \frac{-33}{4} \] ### Final Answer Thus, the value of \(v\) is: \[ v = -\frac{33}{4} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of [6 1/4 div {2 1/4 - 1/2(2 1/2 - bar(1/4 - 1/6))}] .

Find the value of 2.bar(6)-0.bar(9) .

Find the value of [ (1/4 )^2 times ( 1/7 )^2 ] ÷ [ (1/7)^6 ÷ ( 1/7 )^1 ]

What is the value of 1.bar(34) + 4.1bar(2) ?

Find the vlaue of 27xx1.bar( 2) xx 5.526bar(2) xx 0.bar( 6) .

Find the value of (-8u^(2)v^(6))xx(-20uv) for u=2.5 and v=1

Find the value of ( 2.bar 6 - 0.bar 9 ) is ( a ) 4/3 ( b ) 1 /3 ( c ) 5/3

Find the value of Min[(1#2) $ 3, 4#(5$6)] $ Max (6#7), (7#8)] :