Home
Class 14
MATHS
((64)/(121)-(9)/(64))/((8)/(11)+(3)/(8))...

`((64)/(121)-(9)/(64))/((8)/(11)+(3)/(8))=?`

A

`(31)/(88)

B

`(31)/(84)`

C

`(61)/(88)`

D

`(61)/(84)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\left(\frac{64}{121} - \frac{9}{64}\right)}{\left(\frac{8}{11} + \frac{3}{8}\right)}\), we will follow these steps: ### Step 1: Find a common denominator for the numerator The numerator is \(\frac{64}{121} - \frac{9}{64}\). The least common multiple (LCM) of the denominators 121 and 64 is \(7744\). - Convert \(\frac{64}{121}\) to have a denominator of 7744: \[ \frac{64}{121} = \frac{64 \times 64}{121 \times 64} = \frac{4096}{7744} \] - Convert \(\frac{9}{64}\) to have a denominator of 7744: \[ \frac{9}{64} = \frac{9 \times 121}{64 \times 121} = \frac{1089}{7744} \] Now, we can subtract the two fractions: \[ \frac{4096}{7744} - \frac{1089}{7744} = \frac{4096 - 1089}{7744} = \frac{3007}{7744} \] ### Step 2: Find a common denominator for the denominator The denominator is \(\frac{8}{11} + \frac{3}{8}\). The least common multiple (LCM) of the denominators 11 and 8 is \(88\). - Convert \(\frac{8}{11}\) to have a denominator of 88: \[ \frac{8}{11} = \frac{8 \times 8}{11 \times 8} = \frac{64}{88} \] - Convert \(\frac{3}{8}\) to have a denominator of 88: \[ \frac{3}{8} = \frac{3 \times 11}{8 \times 11} = \frac{33}{88} \] Now, we can add the two fractions: \[ \frac{64}{88} + \frac{33}{88} = \frac{64 + 33}{88} = \frac{97}{88} \] ### Step 3: Combine the results Now we can substitute back into our original expression: \[ \frac{\frac{3007}{7744}}{\frac{97}{88}} = \frac{3007}{7744} \times \frac{88}{97} = \frac{3007 \times 88}{7744 \times 97} \] ### Step 4: Simplify the expression First, calculate \(7744\): \[ 7744 = 88 \times 88 \] So, we can rewrite: \[ \frac{3007 \times 88}{7744 \times 97} = \frac{3007 \times 88}{88 \times 88 \times 97} = \frac{3007}{88 \times 97} \] ### Step 5: Calculate the final answer Now we need to calculate \(88 \times 97\): \[ 88 \times 97 = 8536 \] Thus, the final answer is: \[ \frac{3007}{8536} \] ### Final Answer The simplified result of the expression is: \[ \frac{31}{88} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    MAHENDRA|Exercise EXERCISE|75 Videos
  • SIMPLE INTEREST & COMPOUND INTEREST

    MAHENDRA|Exercise EXERCISE|30 Videos
  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos

Similar Questions

Explore conceptually related problems

12(1)/(3)-(8)/(9)+(11)/(3)-4(11)/(9)=?

(64)^((1)/(3))[(64)^((1)/(3))-(64)^((2)/(3))]=?

Multiply: (8)/(-9)by(-7)/(-16) (ii) (-8)/(9)by(3)/(64)

Evaluate : ((6.4)^(2)-(5.4)^(2))/((8.9)^(2)+(8.9xx2.2)+(1.1)^(2))

Factorise (64)/(125)a^3-(96)/(25)a^2+(48)/(5)a-8

When expressed as a fraction 64% would mean (16)/(25) b.(8)/(81) c.(9)/(64) d.(12)/(121)

The HCF of (2)/(3),(8)/(9),(64)/(81) and (10)/(27) is...

((6.4)^(2)-(5.4)^(2))/((8.9)^(2)+8.9xx2.2+(1.1)^(2))=

Evaluate: (((8)/(9))^(2)xx(-3)^(7)xx((1)/(2))^(3))/((27)^(2)xx64)

(64)^(4)-:(8)^(5)=?(8)^(8)b.(8)^(2) c.(8)^(12)d.(8)^(4)