Home
Class 14
MATHS
The value of cos 105^@ + sin 105^@ is...

The value of cos `105^@ + sin 105^@` is

A

0

B

`(sqrt3//2)`

C

`1//sqrt2`

D

`(sqrt3+1)//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 105^\circ + \sin 105^\circ \), we can follow these steps: ### Step 1: Rewrite the angles We can express \( 105^\circ \) as \( 90^\circ + 15^\circ \). ### Step 2: Use trigonometric identities Using the angle addition formulas: - \( \cos(90^\circ + \theta) = -\sin(\theta) \) - \( \sin(90^\circ + \theta) = \cos(\theta) \) Thus, we have: \[ \cos 105^\circ = \cos(90^\circ + 15^\circ) = -\sin 15^\circ \] \[ \sin 105^\circ = \sin(90^\circ + 15^\circ) = \cos 15^\circ \] ### Step 3: Substitute back into the expression Now we substitute these values into the original expression: \[ \cos 105^\circ + \sin 105^\circ = -\sin 15^\circ + \cos 15^\circ \] ### Step 4: Use the sine subtraction formula We can rewrite \( -\sin 15^\circ + \cos 15^\circ \) as: \[ \cos 15^\circ - \sin 15^\circ \] ### Step 5: Apply the sine subtraction formula We can use the formula for the difference of sines: \[ \cos A - \sin A = \sqrt{2} \sin\left(45^\circ - A\right) \] where \( A = 15^\circ \). Thus: \[ \cos 15^\circ - \sin 15^\circ = \sqrt{2} \sin(45^\circ - 15^\circ) = \sqrt{2} \sin(30^\circ) \] ### Step 6: Calculate the sine value Since \( \sin(30^\circ) = \frac{1}{2} \): \[ \cos 15^\circ - \sin 15^\circ = \sqrt{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2} \] ### Step 7: Final answer Thus, the value of \( \cos 105^\circ + \sin 105^\circ \) is: \[ \frac{\sqrt{2}}{2} \] ### Conclusion The correct option is \( \frac{1}{\sqrt{2}} \), which corresponds to option 3.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PIPES AND CISTERNS

    UPKAR PUBLICATION |Exercise QUESTION BANK |46 Videos
  • PRACTICE SET 1

    UPKAR PUBLICATION |Exercise PART-III QUANTITATIVE APTITUDE|49 Videos

Similar Questions

Explore conceptually related problems

cos 15^@+ cos 105^@ =?

Prove that (i) "cos " 15^(@) - " sin " 15^(@) = (1)/(sqrt(2)) (ii) " cot " 105^(@) - " tan " 105^(@) =2sqrt(3) (iii) (tan 69^(@) + tan 66^(@))/(1-tan 69^(@) tan 66^(@)) =-1

Knowledge Check

  • The value of cos 105^(@) is

    A
    `(sqrt3+1)/(2sqrt2)`
    B
    `(sqrt3-1)/(2sqrt2)`
    C
    `-(sqrt3+1)/(2sqrt2)`
    D
    `(1- sqrt3)/(2sqrt2)`
  • The value of cos 105^(@)+sin105^(@) is

    A
    `1/2`
    B
    1
    C
    `sqrt(2)`
    D
    `1/(sqrt(2))`
  • The value of cos105^(@)+sin105^(@) is

    A
    `(1)/(2)`
    B
    1
    C
    `sqrt(2)`
    D
    `(1)/(sqrt(2))`
  • Similar Questions

    Explore conceptually related problems

    The value of sin105^(@) is :

    find the value of sin105^@

    The cube of 105 is

    The cube of 105 is

    sin 15^(@) + cos 105 ^(@) =