Home
Class 11
MATHS
If beta is one of the angles between the...

If `beta` is one of the angles between the normals to the ellipse, `x^(2) + 3y^(2) = 9` at the points `(3cos theta, sqrt(3) sin theta) and (-3sin theta, sqrt(3) cos theta), theta in (0, (pi)/(2))," then "(2 cot beta)/(sin 2 theta)` is equal to

A

`(2)/(sqrt(3))`

B

`(sqrt(3))/(4)`

C

`sqrt(2)`

D

`(1)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int ((sin theta +cos theta ))/(sqrt(sin 2 theta)) d theta is equal to :

Prove that sin (3theta)/(1+2cos 2theta)=sin theta .

If 0 lt theta lt (pi)/(2) and tan theta = (sqrt(5))/(2) then cos theta is equal to

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

If cos theta+sin theta=sqrt(2) cos theta ,then show that cos theta-sin theta=sqrt(2) sin theta

Prove that (sin2theta)/(1+cos2theta)=tantheta

Prove that (sin2theta)/(1-cos2theta)=cottheta

If sin theta + cosec theta = 2, then the value of sin ^(6) theta + cosec ^(6) theta is equal to