Home
Class 12
MATHS
If 4hat(i)+7hat(j)+8hat(k),2hat(i)+3hat(...

If `4hat(i)+7hat(j)+8hat(k),2hat(i)+3hat(j)+4hat(k)` and `2hat(i)+hat(j)+7hat(k)` are the position vectors of the vertices A, B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is

A

`(2)/(3)(-6hat(i)-8hat(j)-6hat(k))`

B

`(2)/(3)(6hat(i)+8hat(j)+6hat(k))`

C

`(1)/(3)(6hat(i)+13hat(j)+18hat(k))`

D

`(1)/(3)(5hat(j)+12hat(k))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 4hat(i) + 11hat(j) + m hat(k), 7hat(i) + 2hat(j) + 6hat(k) and hat(i) + 5hat(j)+ 4hat(k) are coplanar, them m is equal to .

If 3hat(i) + 2hat(j) -5hat(k)= x(2hat(i) -hat(j) + hat(k)) + y(hat(i) + 3hat(j)-2hat(k))+z(-2hat(i) + hat(j)-3hat(k)) , then

The straight line r = (hat(i) + hat(j) + hat(k)) + alpha (2hat(i) - hat(j) + 4hat(k)) meets the XY - plane at the point