Home
Class 12
MATHS
If vec(r) and vec(s) are non-zero consta...

If `vec(r)` and `vec(s)` are non-zero constant vectors and the scalar b is chosen such that `|vec(r)+bvec(s)|` is minimum, then the value of `|bvec(s)|^(2)+|vec(r)+bvec(s)|^(2)` is equal to

A

`2|vec(r)|^(2)`

B

`|vec(r)|^(2)//2`

C

`3|vec(r)|^(2)`

D

`|vec(r)|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(a)|=3, |vec(b)|=1, |vec(c )|=4 and vec(a) +vec(b) + vec( c)=0 , then the value of vec(a).vec(b) + vec(b).vec(c )+vec(c ).vec(a) is equal to