Home
Class 12
MATHS
Four vectors vec(a),vec(b),vec(c) and ve...

Four vectors `vec(a),vec(b),vec(c)` and `vec(x)` satisfy the relation `(vec(a)*vec(x))vec(b)=vec(c)+vec(x)` where `vec(b)*vec(a) ne 1` . Then value of `vec(x)` in terms of `vec(a), vec(b)` and `vec(c )` is equal to

A

`((vec(a)*vec(c))vec(b)-vec(c)(vec(a)*vec(b)-1))/((vec(a)*vec(b)-1))`

B

`(vec(c))/(vec(a)*vec(b)-1)`

C

`(2(vec(a)*vec(c))vec(b)+vec(c))/(vec(a)*vec(b)-1)`

D

`(2(vec(a)*vec(c))vec(c)+vec(c))/(vec(a)*vec(b)-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(a)|=3, |vec(b)|=1, |vec(c )|=4 and vec(a) +vec(b) + vec( c)=0 , then the value of vec(a).vec(b) + vec(b).vec(c )+vec(c ).vec(a) is equal to