Home
Class 12
MATHS
Let vec(V)=2hat(i)+hat(j)-hat(k) and vec...

Let `vec(V)=2hat(i)+hat(j)-hat(k)` and `vec(W)=hat(i)+3hat(k)` . If `vec(U)` is a unit vector, then the maximum value of the scalar triple product `[vec(U)vec(V)vec(W)]`is

A

`-1`

B

`sqrt(10)+sqrt(6)`

C

`sqrt(59)`

D

`sqrt(60)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec(a)=hat(i)-hat(j), vec(b)=hat(j)-hat(k), vec(c)=hat(k)-hat(i) . If vec(d) is a unit vectors such that vec(a)*vec(d)=0=[vec(b)vec(c)vec(d)] , then vec(d) is (are) :