Home
Class 12
MATHS
Letvec(u) be a vector coplanar with the ...

Let`vec(u)` be a vector coplanar with the vectors `vec(a)=2hat(i)+3hat(j)-hat(k)` and `vec(b)=hat(j)+hat(k)` . If `vec(u)` is perpendicular to `vec(a)` and `vec(u)*vec(b)=24` , then `|vec(u)|^(2)` is equal to

A

`84`

B

`336`

C

`315`

D

`256`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec(a)=hat(i)-hat(j), vec(b)=hat(j)-hat(k), vec(c)=hat(k)-hat(i) . If vec(d) is a unit vectors such that vec(a)*vec(d)=0=[vec(b)vec(c)vec(d)] , then vec(d) is (are) :

If vec(A)=hat(i)+2hat(j)+3hat(k), vec(B)=-hat(i)+2hat(j)+hat(k) and vec(C)=3hat(i)+hat(j)," then "vec(A)+tvec(B) is perpendicular to vec(C) , if t is equal to :