Home
Class 11
PHYSICS
If vecA=2hati+3hatj and vecB=hati+4hatj+...

If `vecA=2hati+3hatj and vecB=hati+4hatj+hatk`, then unit vector along `(vecA+vecB)` is

A

`((3hati+7hatj+hatk))/(sqrt(59))`

B

`((3hati+2hatj))/(sqrt(59))`

C

`((hati+4hatj+hatk))/(sqrt(18))`

D

`((2hati+3hatj))/(sqrt(13))`

Text Solution

Verified by Experts

The correct Answer is:
A

Unit vector along `(vecA+vecB)=((vecA+vecB))/(|vecA+vecB|) rArr (3hati+7hatj+hatk)/( sqrt(59))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=7hati-2hatj+hatk,vecb=hati-2hatj+2hatk and vecc=3hati-8hatk and vecd=-hatj+hatk .(iii)Find the unit vector along vecb-veca

For given vectors, veca=2 hati-hatj+2 hatk and vecb=-hati+hatj-hatk , find the unit vector in the direction of the vectors veca+vecb

If veca=2hati+2hatj+3hatk and vecb=2hati-hatj+hatk , then the value of (veca+vecb).(veca-vecb) is equal to

Consider the vectors veca=hati-hatj+3hatk and vecb=3hati-7hatj+hatk Find the unit vector in the direction of (veca+vecb)/2

if veca=hati+hatj+hatk, vecb=2 hati-hatj+3 hatk and vecc=hati-2 hatj+hatk , find a unit vector parallel to the vector 2 veca-vecb+3 vecc

i) Compute |hati+hatj+hatk| ii) If veca=2 hati+3 hatj+6 hatk , find the unit vector along veca .

Let veca=2hati+hatj-3hatk and vecb=4hati+hatj+hatk be two vectors. Find a vector vecc perpendicular to veca and vecb .

Let veca=2hati-4hatj+5hatk and vecb=hati-2hatj-8hatk be two vectors Find a vector vecc representing a diagonal of the parallelogram with veca and vecb as the adjacent sides.