Home
Class 11
PHYSICS
Let vecu, vecv, vecw be such that |vecu|...

Let `vecu, vecv, vecw` be such that `|vecu|=1, |vecv|=2 and |vecw|=3`. If the projection of `vecv` along `vecu` is equal to that of `vecw` along `vecv and vecw` are perpendicular to each other then `|vecu-vecv+vecw|` equals

A

2

B

`sqrt(7)`

C

`sqrt(14)`

D

14

Text Solution

Verified by Experts

The correct Answer is:
C

Projection of `vecv` along `vecu and vecw` along `vecu is (vecv. vecu)/(|vecu|) and (vecw.vecu)/(|vecu|)` respectively.
According to the equation `(vecv.vecu)/(|vecu|)=(vecw.vecu)/(|vecu|) rArr vecv.vecu=vecw. vecu and vecv. vecw=0`
`|vecu-vecv+vecw|^(2)=|vecu|^(2)+|vecv|^(2)+|vecw^(2)|-2vecu.vecv-2vecv.vecw+2vecu//vecw=14 rArr |vecu-vecv+vecw|= sqrt(14)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec u, vec v , vec w be vectors such that vecu +vec v + vec w =0 and |vec u | =3, |vec v | = 4, | vec w | = 5 , " then " vec u. vec v + vec v .vec w+ vec w .vec u is equal to : a)47 b)-47 c)0 d)-25

If veca, vecb , vecc are the three vectors mutually perpendicular to each other and |veca| =1 , |vecb| = 3 and |vecc| = 5, then [veca -2 vecb, vecb - 3 vecc , vecc - 4 veca] is equal to a)0 b)-24 c)3600 d)-215