Home
Class 14
MATHS
What is the LCM of (x^2 - y^2 – z^2 – 2y...

What is the LCM of `(x^2 - y^2 – z^2 – 2yz),(x^2 - y^2 + z^2 + 2xz)` and `(x^2 + y^2 - z^2 - 2xy)`?

A

`(x + y + z) (x + y - z) (x – y + z) `

B

`(x + y + z) (x - y - z) (x – y + z)`

C

`(x + y + z) (x + y - z) (x - y - z) `

D

`(x + y - z) (x - y - z) (x - y + z)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 + y^2 + z^2 = xy + yz + zx , then the triangle is :

If x^(2) + y^(2) + z^(2) = xy + yz + zx , then the triangle is :

Add : x y ^(2) z ^(2)+ 3x ^(2) y ^(2) z - 4x ^(2)yz ^(2), - 9x ^(2) y ^(2) z + 3x y ^(2) z ^(2) + x ^(2) yz ^(2)

If x+y+z=0,x^2+y^2+z^2=60, find xy + yz + zx

xquad x ^ (2), y2yquad y ^ (2), 2xz, z ^ (2), xy] | = (xy) (yz) (zx) (xy + yz + 2x)