Home
Class 14
MATHS
What is the value of (1/(sqrt(9) - sqrt(...

What is the value of `(1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4)))` ?

A

`0`

B

`1//3`

C

`1`

D

`5`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7))-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5