Home
Class 14
MATHS
x^(4)+xy^(3)+x^(3)y+xz^(3)+y^(4)+yz^(3) ...

`x^(4)+xy^(3)+x^(3)y+xz^(3)+y^(4)+yz^(3)` is divisible by

A

(x+y) only

B

`(x^(3)+y^(3)+z^(3))` only

C

both (x +y) and `(x^(3)+y^(3)+z^(3))`

D

None of the above

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Perform the division: (x ^(3) y ^(3) + x ^(2) y ^(3) - xy ^(4) + xy)div xy

If x=2,y=1 then x^(4)+2x^(3)y-2xy^(3)-y^(4) is equal to

Simplify ((3)/(4) x - (4)/(3) y) ^(2) + 2 xy

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

Express ((x^(3)+y^(3)+z^(3)-3xyz)/((x^(2)+y^(2)+z^(2)-xy-yz-zx))) in lowest terms

If (x + y + z) = 16 and xy + yz + zx = 75, then x ^(3) + y ^(3) + z ^(3) - 3xyz is

(4x^3y - 6x^2 y^2 + 4xy^3 - y^4) can be expressed as :

If (x^(3)+4xy^(2))/(4x^(2)y+y^(3))=15/16 , then find x : y.