Home
Class 14
MATHS
If a^(x)=b,b^(y)=candxyz=2, then c^(z)=?...

If `a^(x)=b,b^(y)=candxyz=2`, then `c^(z)=`?

A

a

B

b

C

ab

D

`a//b`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

If (a+b)/(x)=(b+c)/(y)=(c+a)/(z), then (A) (a+b+c)/(x+y+z)=(ab+bc+ca)/(ay+bz+cx)(B)(c)/(y+z-x)=(a)/(x+z-y)=(b)/(x+y-z)(C)(c)/(x)=(a)/(y)=(b)/(z)(D)(a+b)/(b+c)=(a+b+x)/(b+c+y)

if a^(x)=b^(y)=c^(z) and b^(2)= acprove that y=(2xz)/(x+z)

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

If a,b,c>0 and x,y,z in R then |[(a^x+a^(-x))^2, (a^x-a^(-x))^2, 1] , [(b^y+b^(-y))^2, (b^y-b^(-y))^2, 1], [(c^z+c^(-z))^2, (c^z-c^(-z))^2, 1]|=