Home
Class 14
MATHS
What is (1)/(a-b) -(1)/(a+b) -(2b)/(a^...

What is
`(1)/(a-b) -(1)/(a+b) -(2b)/(a^(2)+b^(2))-(4b^(3))/(a^(4)+b^(4)) -(8b^(7))/(a^(8)-b^(8))` equal to ?

A

a+b

B

a-b

C

1

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify.(4a-b)/(1-4ab)-(4a+b)/(1+4ab)-(4b(1-8a^(2)))/(16a^(2)b^(2)-1)

simplify (a - b)(a + b)(a^2 + b^2)(a^4 + b^4) (a^8 + b^8) (a^(16) + b^(16)) is:

If (sin^(4)A)/(a)+(cos^(4)A)/(b)=(1)/(a+b), then the value of (sin^(8)A)/(a^(3))+(cos^(8)A)/(b^(3)) is equal to (A) (1)/((a+b)^(3)) (B) (a^(3)b^(3))/((a+b)^(3))(C)(a^(2)b^(2))/((a+b)^(2)) (D) none of these

(-8b^(2)+4b-8)+(-2b^(2)-5b-1)

4(2a-3b)^(2)+8(2a-3b)

By how much is a^(4)+4a^(2)b^(2)+b^(4) more than a^(4)-8a^(2)b^(2)+b^(4)