Home
Class 14
MATHS
If ax+by -2=0 and ax+by =1, where a ne 0...

If `ax+by -2=0` and `ax+by =1`, where `a ne 0, b ne 0`, then what is `(a^(2)x+b^(2)y)` equal to ?

A

a+b

B

2ab

C

`a^(3)+b^(3)`

D

`a^(4)+b^(4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

x = ( sqrt ( a + b ) - sqrt (a -b ))/( sqrt (a +b ) + sqrt (a -b )), then what is bx ^(2) - 2ax + b equal to (b ne 0) ?

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

If ax^(2) + 2bx + c = 0 and ax^(2) + 2cx + b = 0, b ne c have a common root, then (a + b + c)/( a) is equal to

Let f(x) = (ax +b)/(cx + d) (da-cb ne 0, c ne0) then f(x) has

If the pairs of lines ax^2+2hxy+by^2=0 and a'x^2+2h'xy+b'y^2=0 have one line in common, then (ab'-a'b)^2 is equal to

If x^(2)+ax+b=0 and x^(2)+bx+a=0,(a ne b) have a common root, then a+b is equal to

If a,x,b are in AP, a,y,b are in GP and a,z,b are in HP such that x=9z and a > 0 , b > 0 , where a ne b , b ne 0 then x^2/y^2 is _________.