Home
Class 14
MATHS
What is the lowest common multiple of ab...

What is the lowest common multiple of `ab (x^(2)+1) + x (a^(2)+b^(2)) and ab (x^(2)-1) + x(a^(2)-b^(2))` ?

A

`(a^(2)x^(2)-b^(2)) (a+bx)`

B

`(a^(2)x^(2)-b^(2))(a+bx)^(2)`

C

`(a^(2)x^(2)-b^(2)) (a-bx)`

D

`(a^(2)x^(2)-b^(2)) (a-bx)(2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the LCM of the polynomials ab(x^(2)+1)+x(a^(2)+b^(2)) and ab(x^(2)-1)+x(a^(2)-b^(2))

factorize : ab(x^2+1)+x(a^2+b^2)

The square root of x^(b^(2))x^(b^(2)+2ab)x^(a^(2)-b^(2)) is

Find the angle between the lines , (a^(2) - ab) y = (ab+b^(2))x+b^(3) , and (ab+b^(2)) y = (ab-a^2)x+a^(3) where a lt b lt 0

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

x^(2)+2ab=(2a+b)x

Find the value of (5a^(6))x(-10ab^(2))x(-2.1a^(2)b^(3)) for a=1 and b=(1)/(2)