Home
Class 14
MATHS
The value of (1)/(1xx4)+(1)/(4xx7)+(1)/(...

The value of `(1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+…(1)/(16xx19)` is

A

`5/19`

B

`6/19`

C

`8/19`

D

`9/19`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1)/( 3 xx 7) + (1)/( 7 xx 11) + (1)/( 11 xx 15) + . . . + (1)/(899 xx 903) ?

Find the value of (1)/(2xx3)+(1)/(3xx4)+(1)/(4xx5)+(1)/(5xx6)+backslash+(1)/(9xx10)

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

If 1-(1)/(3)+(1)/(5)-(1)/(7)+(1)/(9)-(1)/(11)+...=(pi)/(4), then value of (1)/(1xx3)+(1)/(5xx7)+(1)/(9xx11)+... is pi/8bpi/6c. pi/4d. pi/36

((1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+(1)/(10xx13)+(1)/(13xx16))=?

The sum of the series (1)/(3xx7)+(1)/(7xx11)+(1)/(11xx15)+.... is

If A= (1)/(1 xx 2) + (1)/(1 xx 4) + (1)/(2 xx 3) + (1)/(4 xx 7) + (1)/(3 xx 4) + (1)/(7 xx 10) …..upto 20 terms, then what is the value of A?

What is the value of (1)/(7)times(1)/(7)-:(2)/(7) ?