Home
Class 14
MATHS
If (x+1) is the HCF of Ax^(2) + Bx + C a...

If `(x+1)` is the HCF of `Ax^(2) + Bx + C` and `Bx^(2) + Ax + C` where A `ne` B, then the value of C is

A

A

B

B

C

A-B

D

0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+1) is the HCF of (a x^(2) + bx + c) and (bx^(2) + ax + c) , then the value of c is

If (x-alpha) is the H.C.F of x^(2)+ax+b and x^(2)+bx+a, then find the value of and a+b+1

If (x-alpha) is the H.C.F of x^(2)+ax+b and x^(2)+bx+a, then find the value of and a+b+1

If (x-alpha) is the H.C.F of x^(2)+ax+b and x^(2)+bx+a, then find the value of and a+b+1

If f(x) =ax^(2) +bx + c, g(x)= -ax^(2) + bx +c " where " ac ne 0 " then " f(x).g(x)=0 has

If 1/(2-sqrt(-2)) is one of the roots of ax^(2)+bx+c = 0 , where a,b, c are real, then what are the values of a,b,c respectively ?

(ax^(2) + bx + c)^(n)