Home
Class 14
MATHS
If x = a cos theta and y = b cot theta ...

If `x = a cos theta` and `y = b cot theta` then `(ax^(-1) -by^(-1))(ax^(-1) + by^(-1))` is equal to

A

0

B

1

C

`tan^(2) theta`

D

`sin^(2) theta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a cot theta+b cos ec theta)=x and (b cot theta+a cos ec theta)=y then x^(2)-y^(2) is equal to:

(x) / (a) cos theta + (y) / (b) sin theta = 1, (x) / (a) sin theta- (y) / (b) cos theta = 1 then (x ^ (2)) / (a ^ (2)) + (y ^ (2)) / (b ^ (2)) =

If x=sec theta-tan theta and y=cos ec theta+cot theta then prove that xy+1=y-x

If x=sec theta-tan theta andy=cos ec theta+cot theta then prove that xy+1=y-x

If sin theta+cos theta=a,tan theta+cot theta=b, show that (a^(2)-1)/(2)=(1)/(b)

(sin theta)/(1-cos theta)=cos ec theta+cot theta