Home
Class 14
MATHS
If θ is an acute angle and sinθ=cosθ, fi...

If `θ` is an acute angle and `sinθ=cosθ`, find the value of `2tan^2θ+sin^2θ−1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is an acute angle and sintheta=costheta , then find the value of 2tan^(2)theta+sin^(2)theta-1 .

If cosecθ=secθ, then value of θ is

If θ lies in the first quadrant and cos^(2) θ – sin^(2) θ = 1/2 , then the value of tan^(2)2θ + sin^(2)3θ is: यदि θ प्रथम चतुथथांश में है और cos^(2) θ – sin^(2) θ = 1/2 , तो tan^(2)2θ + sin^(2)3θ का मान है:

If {(2 sin θ – cos θ) / (cos θ + sin θ)} = 1, then the value of cot θ is (A) 1/2 (B) 1/3 (C ) 3 (D) 2

Solve, integrate ∫ (dθ)/(sin^2θ * cos^2θ)

If 3 − 2sin^2θ − 3cosθ = 0, 0^circ le θ le 90^circ , then what is the value of (2cosecθ + tanθ) ? यदि 3 − 2sin^2θ − 3cosθ = 0, 0^circ le θ le 90^circ है तो (2cosecθ + tanθ) का मान क्‍या है?

If 5sin θ – 4cos θ = 0, 0^circ lt θ lt 90^circ , then the value of (5sinθ− 2cosθ)/ (5 sin θ + 3cosθ) is: यदि 5sin θ – 4cos θ = 0, 0^circ lt θ lt 90^circ है, तो (5sinθ− 2cosθ)/ (5 sin θ + 3cosθ) का मान है:

If 2cos^(2)θ + 3sinθ = 3 , where 0^circ lt θ lt 90^circ , then what is the value of sin^(2)2θ + cos^2 (θ) + tan^(2)2θ + cos^(2) 2θ = ? यदि 2cos^(2)θ + 3sinθ = 3 , जहा 0^circ lt θ lt 90^circ तो sin^(2)2θ + cos^(2(θ + tan^(2)2θ + cos^(2)2θ का मान बराबर है :

If cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , then what is the value of 4cosecθ + cotθ ? यदि cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , है तो 4cosecθ + cotθ का मान कितना है?

If (sinθ/(1+ cosθ)) + ((1 +cosθ)/sinθ) = 4/sqrt3 0^circ lt θ lt 90^circ , then the value of (tanθ + secθ)^(-1) is : यदि (sinθ/(1+ cosθ)) + ((1 +cosθ)/sinθ) = 4/sqrt3 0^circ lt θ lt 90^circ ,, तो (tanθ + secθ)^(-1) का मान है :