Home
Class 14
MATHS
If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)...

If `x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b) -sqrt(a-2b))`
then `bx^(2)-ax+b` is equal to (given that `b ne 0`)

A

0

B

1

C

ab

D

2ab

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

Ifx=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), thenprovetbx ^(2)-ax+b=0

If x=(sqrt(a+2b)-sqrt(a-2b))/(sqrt((a+2b))+sqrt((a-2b))) , show that bx^(2)-ax+b=0

x = ( sqrt ( a + b ) - sqrt (a -b ))/( sqrt (a +b ) + sqrt (a -b )), then what is bx ^(2) - 2ax + b equal to (b ne 0) ?

If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5) , then a^(2)+b^(2)-4a-6b-3 is equal to

(a+c sqrt(b))(2+y sqrt(b))

If x = (sqrt(2a + 3b)+sqrt(2a - 3b))/(sqrt(2a + 3b) - sqrt(2a - 3b)) , show that 3bx^(2) - 4ax + 3b = 0 .