Home
Class 14
MATHS
If p=cot theta +tan theta and q=sec thet...

If `p=cot theta +tan theta and q=sec theta -cos theta ` then `(p^(2)q)^((2)/(3))-(q^(2)p)^((2)/(3))` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

If sin theta+cos theta=p and sec theta+cos ec theta=q find q(p^(2)-1)=

If sin theta+cos theta=p and sec theta+csc theta=q show that q(p^(2)-1)=2p

Find theta if tan p theta=cot q theta

If sec theta +tan theta =P , then cos theta is equal to

If sin theta+cos theta=p and sec theta+cos ec theta=q show that q(p^(2)-1)=2p

If x=p sec theta+q tan theta&y=p tan theta+q sec theta then prove that x^(2)-y^(2)=p^(2)-q^(2)

if sin theta+cos theta=p and sin^(3)theta+cos^(3)theta=q, then p(p^(2)-3)