Home
Class 14
MATHS
In a triangle ABC if A-B=(pi)/(2), then ...

In a triangle ABC if `A-B=(pi)/(2)`, then `C+2B` is equal to

A

`(2pi)/(3)`

B

`(3pi)/(4)`

C

`pi`

D

`(pi)/(2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if 2b=a+c and A-C=90, then sin B equals

If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to

In a triangle ABC, if 2a cos ((B-C)/(2))=b+c , then secA is equal to :

In Delta ABC,a=2b and |A-B|=(pi)/(3) then /_C is

In triangle ABC ,if (b+c)^(2)=a^(2)+16Delta, then tan A is equal to

In triangle ABC, if (cot A)/(2)=(b+c)/(a), then triangle ABC must be

In triangle ABC , if angle C=(pi)/(2) , then prove sin(A-B)=(a^2-b^2)/(a^2+b^2) .

In a triangle ABC, if /_A=55^(@) and /_B=15^(@), then c^(2)-a^(2) is equal to

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to